

HANCOCK COAL PTY LTD

Calibre Rail Alpha Coal Project – Rail Phase 1B

Detailed Floodplain Study Diamond Creek /Myra Creek /Nibbereena Creek

## HC-CRL-24100-RPT-0138 CJVP10007-REP-C-016

MASTER COPY

|     | 1                          |              | op (tu)   | 4              |            |          |
|-----|----------------------------|--------------|-----------|----------------|------------|----------|
| 0   | Issued for Use             | J. Mansfield | G. Boytar | S. Ariyatatham | J. Bryce   | Nov 2011 |
| В   | Issued for Client Review   | J. Mansfield | G. Boytar | S. Ariyaratnam |            | Nov 2011 |
| A   | Issued for Internal Review | J. Mansfield |           |                |            | Nov 2011 |
| Rev | Description                | Author       | Checked   | Approved       | Authorised | Date     |

Rev 0

i

Issue Date: Page No:

Revision No:

| 1.0    | PURF   | POSE        |                                    | 1    |
|--------|--------|-------------|------------------------------------|------|
| 2.0    | PRO    | IECT BACKO  | GROUND                             | 1    |
| 3.0    | REFE   | RENCES, CO  | ODES AND STANDARDS                 | 3    |
| 4.0    | ABBF   | REVIATIONS  | 5                                  | 3    |
| 5.0    | INTR   | ODUCTION    | l                                  | 4    |
|        | 5.1    | Floodplain  | Location and Description           | 4    |
|        | 5.2    | Diamond C   | Creek                              | 6    |
|        | 5.3    | Myra Creel  | k                                  | 6    |
|        | 5.4    | Nibbereena  | a Creek                            | 6    |
| 6.0    | COM    | MUNITY CO   | ONSULTATION                        | 6    |
| 7.0    | BAN    | KABLE FEAS  | SIBILITY STUDY (BFS)               | 6    |
|        | 7.1    | Design Crit | teria                              | 7    |
|        | 7.2    | Design Pro  | ocess                              | 8    |
| 8.0    | FLOC   | DPLAIN MO   | DDELLING DESIGN CRITERIA           | 9    |
| 9.0    | DETA   | AILED FLOO  | DPLAIN ANALYSIS                    | 10   |
|        | 9.1    | Introductio | on                                 | 10   |
|        |        | 9.1.1       | Hydrology                          | 10   |
|        |        | 9.1.1.1     | Previous hydrology                 | 10   |
|        |        | 9.1.1.2     | Additional Information             | 10   |
|        |        | 9.1.1.3     | RORB Analysis                      | . 11 |
|        |        | 9.1.2       | MIKE Elood Model                   | 15   |
|        |        | 9.1.2.1     | Sensitivity Testing                | 19   |
|        | 9.2    | Floodplain  | Drainage Structure Recommendations | 22   |
|        | 9.3    | Results     |                                    | 23   |
| 10.0   | CON    | CLUSION     |                                    | 26   |
| APPEND | IX A I | RORB PARA   | METERS AND RESULTS                 | 27   |
| APPEND | IX B I | LOOD MAP    | PS                                 | 28   |

## 1.0 PURPOSE

The purpose of this report is to analyse and assess the impact of the Alpha Coal Project (ACP) railway line as it traverses the Diamond Creek/Myra Creek/Nibbereena Creek floodplain system. The analysis provides recommendations of the cross-drainage infrastructure required to minimise impacts to existing flow-paths and to meet the conditions set in the Environmental Impact Study (EIS) and the Supplementary Environmental Impact Study (SEIS).

This Report details the pre- and post-development inundation extents for the 5, 50 and 100 year Average Recurrence Interval (ARI) events. The results for depths of flow, velocity fields and afflux from the development of the railway have been assessed for the approved design criteria of the 50 year ARI event.

## 2.0 PROJECT BACKGROUND

Hancock Coal Infrastructure Pty Ltd (HCIPL) are undertaking an investigation into the development of a 30 Mtpa open pit, thermal coal mine within the Galilee Basin 50km north of the Alpha township in central Queensland. This project is known as the Alpha Coal Project (ACP). A project overview can be seen in Figure 1.

As part of this project, a 500km standard gauge rail alignment and associated infrastructure is required to transport the coal from the mine, at Alpha, to the port at Abbot Point, north of Bowen. Calibre has recently completed the Bankable Feasibility Study (BFS) for the rail alignment and is continuing to progress the identified critical path detail design activities.

Subsequent to this, an EIS has been prepared and corresponding SEIS compiled to clearly define design parameters to be adhered to in any further investigations and eventual design.

Part of the stakeholder response to the EIS identified specific concerns that were raised in relation to the drainage criteria approved by Hancock Coal in the BFS. The SEIS has taken into account these concerns and the drainage criteria updated to address the issues raised in the EIS. This Detail Floodplain Study takes into account these changes in the drainage criteria developed for the SEIS.

Document No:

Revision No:

Issue Date: Page No:



Figure 1: Proposed Alpha Coal Project railway alignment

## 3.0 **REFERENCES**, CODES AND STANDARDS

The following reports and codes were used as part of the floodplain modelling:

- BFS Drainage Engineering Report (CVJP10007-REP-C-001/ HC-CRL-24100-RPT-0022);
- Queensland Government Climate Change Guidelines: Increasing Queensland's resilience to inland flooding in a changing climate (2010);
- Australian Rainfall and Runoff (AR&R);
- C&R land holder consultation;
- EIS and SEIS.

The following data sources were used for the hydrologic and hydraulic modelling:

- Department of Environment and Resource management (DERM) blended topographic survey data (Shuttle Radar Topography Mission (SRTM) and combined contour data);
- LiDAR data for current alignment (600m wide corridor with a vertical accuracy of ±100mm) provided by HCIPL;
- LiDAR data flown for BFS alignment (approximate 4000m wide corridor with a vertical accuracy of ±500mm) provided by HCIPL;
- DERM stream-gauge historical data;
- Bureau of Meteorology (BoM) Intensity-Frequency-Duration (IFD) regional data.

#### 4.0 ABBREVIATIONS

| ACP          | Alpha Coal Project                                |
|--------------|---------------------------------------------------|
| AEP          | Average Exceedance Probability                    |
| AR&R         | Australian Rainfall and Runoff                    |
| ARI          | Average Recurrence Interval                       |
| BFS          | Bankable Feasibility Study                        |
| BoM          | Bureau of Meteorology                             |
| C&R          | C&R Consulting Pty Ltd                            |
| CatchmentSIM | Hydrologic catchment delineation program          |
| CSP          | Corrugated Steel Pipe                             |
| DERM         | Department of Environment and Resource Management |
| EIS          | Environmental Impact Statement                    |
| FFA          | Flood Frequency Analysis                          |
| HCPL         | Hancock Coal Pty Ltd                              |
| HCIPL        | Hancock Coal Infrastructure Pty Ltd               |
| IFD          | Intensity-Frequency-Duration                      |
| Lidar        | Light Detection and Ranging                       |
| RORB         | Rainfall and runoff routing program               |
| SEIS         | Supplementary Environmental Impact Statement      |
| SRTM         | Shuttle Radar Topography Mission                  |
| TOF          | Top of Formation                                  |

## 5.0 INTRODUCTION

The proposed rail alignment for the ACP currently crosses the Diamond Creek, Myra Creek and Nibbereena Creek floodplain. The analysis was conducted for this system during the BFS and identified that further detailed hydraulic analysis was required due to the complex floodplain interaction that exists between the three systems. More accurate LiDAR survey along the alignment, Landholder consultation and extended historical stream-gauge records were all incorporated into this study.

The primary output of the Detailed Floodplain Study is to provide detailed mapping of the pre- and post-development flood extents, inundation durations, flow velocities and afflux predictions for the Diamond, Myra and Nibbereena Creek system. A focus of this study is to assess the impacts that the proposed rail alignment would have on the landscape and surrounding properties.

#### 5.1 Floodplain Location and Description

The combined Diamond Creek, Myra Creek and Nibbereena Creek systems have a catchment area of approximately 1,991km<sup>2</sup> and is a significant portion of the Suttor Sub-Basin (18,000km<sup>2</sup>) in the Burdekin River Catchment. The terrain is predominantly very flat with significant low-land floodplains and the land-use is dominated by grazing on natural pastures. The landscape is semi-arid with predominantly ephemeral streams (typically flow each year during the wet season between December and April).

A locality plan of the affected catchments that interface with the ACP railway is illustrated in Figure 2.

Document No:

**Revision No:** 

Issue Date: Page No:



Figure 2: Catchment boundary and location

## 5.2 Diamond Creek

The catchment area for Diamond Creek at the proposed ACP rail alignment (Rail Chainage 195,301m) is approximately 1,470km<sup>2</sup>. The catchment is undeveloped and consists of predominantly pastoral and agricultural land. The main low flow channel is poorly defined and has minimal capacity. Immediately upstream of the railway there is a complex interaction between the channel and floodplain flows.

#### 5.3 Myra Creek

Myra Creek has a contributing catchment area of approximately 347.7km<sup>2</sup> at the proposed ACP rail alignment interface (Rail Chainage 197,873m). The catchment is predominantly undeveloped and consists of mostly pastoral land. The main channel is a well-defined flow-path but has minimal capacity. As such, during flood events, a complex interaction between the channel and floodplain flows occur.

The confluence of Diamond Creek and Myra Creek occurs approximately 4km downstream of the proposed ACP rail alignment.

## 5.4 Nibbereena Creek

Nibbereena Creek has a contributing catchment area of approximately 172.8km<sup>2</sup> at the proposed ACP rail alignment interface (Rail Chainage 200,515m). The catchment is predominantly undeveloped and consists of mostly pastoral land. The main channel is a well-defined flow-path but has minimal capacity. As such, during flood events, a complex interaction between the channel and floodplain flows occurs.

The confluence of Diamond Creek and Nibbereena Creek occurs approximately 7km downstream of the proposed ACP rail alignment.

## 6.0 COMMUNITY CONSULTATION

As part of the Detailed Floodplain Study, community consultation was undertaken to correlate the current modelling to the historical knowledge of stakeholders in relation to individual floodplains. The feedback received has been incorporated into the modelling.

## 7.0 BANKABLE FEASIBILITY STUDY (BFS)

Prior to this detailed floodplain analysis, Calibre undertook a BFS level design of all drainage structures on the proposed ACP rail alignment, details of which are summarised in the BFS Drainage Engineering Report (CJVP10007-REP-C-001 / HC-CRL-24100-RPT-0022). The design proposed in the BFS report was used as the basis for the analysis detailed in this study.

## 7.1 Design Criteria

The approved drainage design criteria for the BFS are specified in Tables 1 and 2 below.

| Design Aspect          | Design Criteria                                                                                                                                                                                                                                                                                                        |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Culvert Classification | Major culverts: culvert locations with a 50 years ARI design flow $\geq 50 m^3/sec.$                                                                                                                                                                                                                                   |  |  |
|                        | Minor culverts: culvert locations with a 50 year ARI design flow $< 50 \mathrm{m}^3/\mathrm{sec.}$                                                                                                                                                                                                                     |  |  |
| Design Flood           | Minor culverts shall pass the 20 year ARI design event flow.                                                                                                                                                                                                                                                           |  |  |
|                        | Major culverts shall pass the 50 year ARI design event flow.                                                                                                                                                                                                                                                           |  |  |
| Freeboard              | Min. 300mm to the formation surface for design event.                                                                                                                                                                                                                                                                  |  |  |
| Headwater              | Max. headwater to be 1.5 x culvert diameter.                                                                                                                                                                                                                                                                           |  |  |
| Max. Outlet Velocity   | 5.0m/sec for design event with appropriate scour protection                                                                                                                                                                                                                                                            |  |  |
| Scour Protection       | Capable of passing 20 years ARI design flood without damage. Rock sizing to be designed in accordance with AUSTROADS Waterway Design, 1994.                                                                                                                                                                            |  |  |
| Culvert Type & Size    | CSP (galvanised corrugated steel pipes).                                                                                                                                                                                                                                                                               |  |  |
|                        | CSP Culverts shall be provided with minimum 600mm earthwork cover.                                                                                                                                                                                                                                                     |  |  |
|                        | Min. diameter to be 900mm for engineering culverts.                                                                                                                                                                                                                                                                    |  |  |
| Diversion drains       | Unlined diversion drains shall be used to divert catchment flows from<br>one catchment to another, where culverts cannot be used through the<br>rail formation. These should cater for the 20 year ARI design flood<br>without overtopping or scour. Drain design should minimise drain scour<br>for the design event. |  |  |
| Cut off drains         | Unlined cut off drains (with a minimum 20 year ARI design flow capacity) should be provided on the upstream side of the railway in cuttings to prevent surface water runoff entering the cuttings and causing scour and washouts.                                                                                      |  |  |
| Levees                 | Designed to ensure that there is 100mm freeboard above the culvert headwater design level.                                                                                                                                                                                                                             |  |  |

Table 1: General drainage design criteria

| Design Aspect     | Design Criteria                                                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design Flood      | Bridges shall pass the 50 year ARI design event flow.                                                                                                         |
| Freeboard         | Min. 500mm to bridge soffit for 50 year ARI design flow.                                                                                                      |
|                   | Min. 300mm to TOF (embankments and guide banks) for 50 year ARI design flow.                                                                                  |
| Max Velocity      | 3.8m/s to enable to adopt a practical limit of 1 tonne rock class protection for economy.                                                                     |
| Scour Protection  | Provide rock protection to cater for 50 year ARI design flow velocities.<br>Rock sizing to be designed in accordance with AUSTROADS Waterway<br>Design, 1994. |
| Maximum backwater | 1.5m with reduction at sensitive locations.                                                                                                                   |
| Guide banks       | To be designed in accordance with AUSTROADS Waterway Design, 1994.                                                                                            |

#### Table 2: Bridge hydraulic design criteria

#### 7.2 Design Process

Hydrologic and hydraulic modelling was completed for all drainage structures along the ACP alignment during the BFS. For major crossings, design flows were estimated using either the rational method, a preliminary hydrologic model (CatchmentSim and RORB) or a Flood Frequency Analysis (FFA) where stream-gauge data was available. Design flows were then selected based on the best information available at the time of the study and what method was considered most appropriate for the level of analysis required for the BFS.

These flows were then hydraulically modelled depending upon the proposed structure type:

- Culverts were analysed using HY-8 (a 1-D modelling program design for culvert analysis) and sizes were determined to ensure afflux was less than 1.5m or the equivalent to the upstream bridge water levels determined from bridge modelling.
- Bridges were assessed using Afflux (a 1-D bridge hydraulic modelling program) to determine span widths that allowed less than 1.5m of afflux (as per the original design criteria). Supplementary culverts for the bridge were sized if the proposed bridge structure was not able to pass flows within the allowable afflux limits.

This level of analysis was sufficient for the purposes of the BFS and was used as a basis for the Detailed Floodplain Study.

## 8.0 FLOODPLAIN MODELLING DESIGN CRITERIA

A Supplementary Environmental Impact Statement (SEIS) was prepared after the conclusion of the BFS and this resulted in certain design criteria (from Tables 1 and 2) being modified to meet stakeholder requirements. Table 3 shows the modified drainage design criteria adopted for the Detailed Floodplain Modelling.

| Design Aspect       | Design Criteria                                                                                                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inundation Extent   | Acceptable increases in inundation extent (above the existing conditions for a given return period to the 50 year ARI event) will be proposed where such an increase will not alter rural land use and result in significant impacts. |
| Inundation Duration | Inundation duration not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.                                                                                    |
| Max Velocity        | Bridge outlet velocity = maximum of $1.2 \text{ x}$ existing velocity at a distance equal to the bridge span downstream of bridge.                                                                                                    |
|                     | Culverts outlet velocity:                                                                                                                                                                                                             |
|                     | = 1.5m/s where erodible soils are present.                                                                                                                                                                                            |
|                     | = 2.5m/s for normal soils (with no erosion control).                                                                                                                                                                                  |
| Maximum afflux      | Maximum 0.5m – normally (unless justifiable).                                                                                                                                                                                         |
|                     | Maximum 0.2m – around critical infrastructure.                                                                                                                                                                                        |
|                     | Maximum 0.1m – around dwellings.                                                                                                                                                                                                      |

#### Table 3: SEIS Modified Drainage Design Criteria

Unless specified in Table 3, the design criteria used for the detailed floodplain analysis are identified in Tables 1 and 2.

## 9.0 DETAILED FLOODPLAIN ANALYSIS

#### 9.1 Introduction

In order to assess the impacts that the proposed ACP rail alignment will have on the Diamond, Myra and Nibbereena Creek systems, a detailed floodplain analysis was conducted. This detailed analysis was then used to assess the adequacy of the proposed cross-drainage structures determined from the BFS.

A detailed hydrologic analysis was completed for both systems and a combined hydraulic model that covers the area of interest, within the floodplain, was developed. The modelling results were then used to assess impacts on inundation extents, time of inundation, afflux and velocities as a result of the ACP railway. From the results of the hydraulic modelling, detailed flood mapping has been produced.

The following sections outline the methodology used to derive the required outputs for the Detailed Floodplain study.

## 9.1.1 Hydrology

#### 9.1.1.1 Previous hydrology

During the BFS, the hydrology for Diamond, Myra and Nibbereena Creeks estimated peak discharges for the 50 year ARI event respectively. No stream-gauge data was available for the systems and no calibration was undertaken.

For full details on the BFS analysis, refer to the BFS Drainage Engineering Report (CJVP10007-REP-C-001 / HC-CRL-24100-RPT-0022).

#### 9.1.1.2 Additional Information

As a result of the additional flooding information that was obtained from landholder consultation and a floodplain field investigation (undertaken by C&R), a more holistic and representative modelling approach for the floodplain system was able to be generated.

This information contained more accurate details regarding the hydrologic parameters and existing system flooding behaviour. More accurate LiDAR survey along the rail corridor was also obtained for the detailed analysis. These data sets were all incorporated as additional design inputs.

The following additional data sets were made available for the Detailed Floodplain Study:

#### Additional Survey

Additional LiDAR survey was obtained along the proposed rail alignment in a 600m wide corridor with a vertical accuracy of  $\pm 100$ mm.

#### 9.1.1.3 RORB Analysis

The contributing catchment areas for Diamond, Myra and Logan Creek were delineated using the GIS based terrain analysis software, CatchmentSim. A visual check was performed against the BFS delineated catchments and SRTM contours to ensure the CatchmentSim delineation was accurate.

All the systems were delineated in CatchmentSim using the DERM SRTM survey data as this was deemed to have sufficient accuracy for the purposes of hydrologic analyses. Catchments were generated for these systems and exported into the rainfall-runoff routing program, RORB.

A summary of the catchment analysis for Diamond, Myra and Nibbereena Creeks are shown below in Tables 4, 5 and 6.

#### Table 4: Diamond Creek catchment properties

| Item            | Value               |
|-----------------|---------------------|
| Catchment area  | 1470km <sup>2</sup> |
| d <sub>av</sub> | 38.47km             |

#### Table 5: Myra Creek catchment properties

| Item            | Value                |
|-----------------|----------------------|
| Catchment area  | 347.7km <sup>2</sup> |
| d <sub>av</sub> | 44.13km              |

#### Table 6: Nibbereena Creek catchment properties

| Item            | Value                |
|-----------------|----------------------|
| Catchment area  | 172.8km <sup>2</sup> |
| d <sub>av</sub> | 19.26km              |

#### Parameters

RORB model parameters were initially set to those recommended by AR&R for Queensland. As no stream-gauge calibration was available for the Diamond, Myra and Nibbereena systems, if catchment characteristics showed similarities between adjacent calibrated catchments, these calibrated parameters were adopted.

Diamond, Myra and Nibbereena Creeks have similar catchment parameters to the neighbouring Mistake Creek catchment which has a stream-gauge that allowed for hydrologic calibration. The Detailed Floodplain Study conducted for the Mistake Creek (CJVP10007-REP-C-014 / HC-CRL-24100-RPT-0136) had calibrated RORB parameters as shown in Tables 7 and 8.

#### Table 7: Mistake Creek calibrated RORB parameters

| Item                        | Value |
|-----------------------------|-------|
| k <sub>c</sub> (calibrated) | 150   |
| m                           | 0.847 |

S:\PRO-Projects\2010\CJVP10007 Alpha Coal – BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-016 Rev 0 - Diamond Creek-Myra Creek-Nibbereena Creek\CJVP10007-REP-C-016 Rev 0 - Diamond Creek-Myra Creek-Nibbereena Creek.doc

| Event ARI (years) | Initial loss (mm) |  |  |
|-------------------|-------------------|--|--|
| 100               | 25                |  |  |
|                   |                   |  |  |

| Table 8: Mistake Creek calibrated loss | ses |
|----------------------------------------|-----|
|----------------------------------------|-----|

50

20

| 10 | 30 | 2.5 |
|----|----|-----|
| 5  | 35 | 2.5 |
|    |    |     |

25

30

Continuing loss (mm/hr) 2.5

2.5

2.5

(Equation 9.1)

(Equation 9.3)

The initial parameters for the RORB model were set using the formulae outlined in AR&R guidelines for Queensland. These are shown below:

 $k_c = 0.88 \ A^{0.53}$ 

where A is the catchment area in square kilometres

 $(k_c/d_{ave}) = -13.5 \text{ m}^3 + 45.8 \text{ m}^2 - 53 \text{ m} + 21.2$  (Equation 9.2) where d\_{ave} is the average stream length from sub-catchment centroids to the catchment outlet

The RORB manual suggests that the  $k_c$  parameter is better estimated using the following formula:

 $k_c$  = 2.2 (A^{0/5}) (Q\_p/2)^{(0.8\text{-m})} where  $Q_p$  is the predicted peak discharge

Using the above formula (equation 9.2) as recommended by AR&R and adopting the 'm' value from the Calibrated Mistake Creek Catchment, initial catchment parameters for Diamond, Myra and Nibbereena Creek were calculated and are shown in Tables 9, 10 and 11.

## Table 9: Diamond Creek initial RORB parameters

| Item           | Value |
|----------------|-------|
| k <sub>c</sub> | 37.05 |
| m              | 0.847 |

#### Table 10: Myra Creek initial RORB parameters

| Item           | Value |
|----------------|-------|
| k <sub>c</sub> | 42.50 |
| m              | 0.847 |

#### Table 11: Nibbereena Creek initial RORB parameters

| Item           | Value |
|----------------|-------|
| k <sub>c</sub> | 18.55 |
| m              | 0.847 |

#### Calibration

No calibration was undertaken for Diamond, Myra and Nibbereena Creeks due to the absence of stream-gauge data.

## Adopted parameters

The calibrated RORB parameter (m) for Mistake Creek was used for the Diamond, Myra and Nibbereena Creek models. The calibrated ' $k_c$ ' from Mistake Creek was unable to be adopted for these catchments as it was assessed that the predicted peak flows were unrealistic for the catchment characteristics. From previous floodplain calibrations it was observed that calibrated parameters lowered the predicted peak discharge when compared to the values produced when using the parameters suggested in equations 9.2 and 9.3. As such, it was conservative to use equations 9.2 and 9.3 (where appropriate) to estimate  $k_c$  to produce a more realistic representation of the catchment characteristics and predicted peak discharges.

Final adopted hydrologic parameters are shown in Tables 12, 13 and 14.

#### Table 12: Diamond Creek adopted RORB parameters

| Item           | Value |
|----------------|-------|
| k <sub>c</sub> | 61.40 |
| m              | 0.847 |

#### Table 13: Myra Creek adopted RORB parameters

| Item           | Value |
|----------------|-------|
| k <sub>c</sub> | 42.50 |
| m              | 0.847 |

#### Table 14: Nibbereena Creek adopted RORB parameters

| Item           | Value |
|----------------|-------|
| k <sub>c</sub> | 18.55 |
| m              | 0.847 |

## Results

The results extracted from the hydrologic modelling for Diamond, Myra and Nibbereena Creek systems at the ACP rail interface are shown below. As Diamond Creek was the dominant catchment, peak storm durations have been adopted from Table 15 for Diamond, Myra and Nibbereena Creek.

| Table | 15: | Peak | storm | durations |
|-------|-----|------|-------|-----------|
|-------|-----|------|-------|-----------|

| Event ARI (years) | Peak discharge storm duration (hours) |
|-------------------|---------------------------------------|
| 100               | 18                                    |
| 50                | 30                                    |
| 5                 | 30                                    |

| Tabla 16 |         | Crook | prodicted | noak | discharges |
|----------|---------|-------|-----------|------|------------|
| Table To | Diamonu | Creek | predicted | peak | uischarges |

| Event ARI (years) | Peak predicted discharge (m <sup>3</sup> /s) |  |  |
|-------------------|----------------------------------------------|--|--|
| 100               | 1512.7                                       |  |  |
| 50                | 1199.4                                       |  |  |
| 5                 | 385.4                                        |  |  |

#### Table 17: Myra Creek predicted peak discharges

| Event ARI (years) | Peak predicted discharge (m <sup>3</sup> /s) |
|-------------------|----------------------------------------------|
| 100               | 542.3                                        |
| 50                | 442.9                                        |
| 5                 | 181.5                                        |

#### Table 18: Nibbereena Creek predicted peak discharges

| Event ARI (years) | Peak predicted discharge (m <sup>3</sup> /s) |
|-------------------|----------------------------------------------|
| 100               | 438.2                                        |
| 50                | 359.7                                        |
| 5                 | 151.6                                        |

Full hydrographs have been extracted from the RORB model for the 5, 50 and 100 year ARI events are provided in Appendix A. The predicted peak discharges for all 3 systems were then used as inflows into the Diamond, Myra and Nibbereena Creek floodplain hydraulic model as described in Section 9.1.2.

## 9.1.2 Hydraulic Modelling

It had been identified during the BFS that the Diamond, Myra and Nibbereena systems had a complex floodplain interaction that occurred upstream of the proposed ACP rail alignment. An additional outcome from the Detailed Flood Study for Logan Creek/Brown Creek (CJVP10007-REP-C-012 / HC-CRL-24100-RPT-0131) was that additional inflows into the Diamond Creek system were required. A summary of the peak Logan Creek/Brown Creek inflows is shown below in Table 19.

| Event ARI (years) | Peak predicted discharge (m <sup>3</sup> /s) |
|-------------------|----------------------------------------------|
| 100               | 613.8                                        |
| 50                | 410.4                                        |
| 5                 | 22.9                                         |

#### Table 19: Logan Creek/Brown Creek peak inflows

In order to accurately assess this interaction, a full hydrodynamic 2-D model was generated using the software package MIKE Flood. The advantage of using MIKE Flood is the program's ability to model large grid-scale features such as complex floodplains while also allowing sub grid-scale features such as culverts and bridges to be modelled with a greater degree of accuracy.

The following section outlines the process used to generate the 2-D model, sensitivity analyses conducted and modelling results.

#### 9.1.2.1 MIKE Flood Model

#### Bathymetry

The hydraulic model required a significant model domain in order to adequately capture the complex floodplain interaction between the Diamond, Myra and Nibbereena Creek systems and be sufficiently downstream to reduce the effects of the downstream boundary. This resulted in a bathymetry of 1330 x 1175 cells at a grid cell size of 20m x 20m (model area of 625.1km<sup>2</sup>). The final bathymetry used for the pre- and post-development rail cases is shown below in Figure 3.

A portion of the bathymetry along the proposed alignment has been based on a combination of LiDAR sources (BFS LiDAR survey and current alignment LiDAR survey) and covers a corridor upstream and downstream of the rail alignment (as per Figure 3). At the time of the Detailed Floodplain Study, the only available survey data outside of these extents was the SRTM survey. Due to the significant accuracy reduction of the SRTM in comparison to the LiDAR, it was assessed that some manipulation of the relative levels of the SRTM was needed to ensure boundary levels matched the LiDAR data at stream inverts.

For this model, the SRTM data was split into upstream and downstream tiles. These tiles were then lowered independently by 3.5m upstream and 4.3m downstream. A variable interpreted transition was generated between the SRTM and LiDAR boundaries for both interfaces to provide a smoothed surface between the two data sets.

The preference was that the SRTM surface at Logan/Brown Creek Inflow was above the LiDAR data to ensure flows were able to flow parallel to the rail and pass over the LiDAR/SRTM interface. This resulted in some large differential surface elevations for the Diamond, Myra and Nibbereena Creek interface areas on the upstream side of the model bathymetry.

This bathymetry manipulation was considered appropriate for the purposes of the assessment of impacts from the proposed ACP rail alignment and utilised the best data available at the time of this Detailed Floodplain Study.



Figure 3: Hydraulic model extent

## Boundary conditions

Logan/Brown, Diamond, Myra and Nibbereena Creek inflow hydrographs were input into the model over an appropriate width to ensure minimal dispersion of flows laterally during peak hydrograph inflows. The downstream boundary condition was set using a combined flow value for the system and a rating curve (discharge-height relationship) generated from the downstream cross section and average stream slope.

Due to the differential levels at the SRTM/ LiDAR interface upstream of the proposed railway, point source inflows were initially used to input inflow hydrographs into the model. After initial simulations, it was determined that impacts from the proposed railway extended up to the inflow locations for Diamond Creek. To more accurately represent the flow conditions at this location, a Mike11 model was constructed using an upstream cross section (duplicated 4 times and projected upstream at the average stream slope) and then coupled in to the 2D domain at the SRTM/ LiDAR interface. The coupled location is shown below in Figure 4. Although impacts have not been covered to their full extent in the 2D model, this approach is considered appropriate to determine the relative impacts of the proposed railway and to assess if impacts are below those specified in the EIS and SEIS.

S:\PRO-Projects\2010\CJVP10007 Alpha Coal – BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-016 Rev 0 - Diamond Creek-Myra Creek-Nibbereena Creek\CJVP10007-REP-C-016 Rev 0 - Diamond Creek-Myra Creek-Nibbereena Creek.doc



Figure 4: Diamond Creek Mike11 couple inflow location

Initial water surface levels from the downstream boundary condition were projected back upstream to account for the loss of storage due to tailwater affects. The selection of downstream boundary levels was subject to sensitivity testing as outlined in Section 9.1.3.

## **Roughness Coefficients**

The Diamond, Myra and Nibbereena Creek systems have two distinct types of roughness: a relatively smooth and well defined flow-path for the main conveyance channels; and a rough, low velocity, low water depth floodplain. As such, two Manning's values were adopted for this Detailed Floodplain Study:

- Channel: n = 0.04
- Floodplain: n = 0.1

In an initial approach to easily and accurately define the two separate roughness areas, 5 year ARI event flows were halved and input into the hydraulic model (to simulate a bank-full stream event). Where depths exceeded 0.2m and velocities above approximately 0.15m/s, a roughness value attributed to a channel was assigned. The remaining model domain was set to a roughness equivalent to floodplain.

| Calibre                                                                   | Document No: | HC-CRL-24100-RPT-0138 |
|---------------------------------------------------------------------------|--------------|-----------------------|
| Alpha Coal Project – Rail                                                 |              | CJVP10007-REP-C-016   |
| Detailed Floodplain Study – Diamond Creek - Myra Creek - Nibbereena Creek | Revision No: | Rev 0                 |
|                                                                           | Issue Date:  | November 2011         |
|                                                                           | Page No:     | 18                    |

After Landholder feedback was received on several neighbouring floodplain systems it was identified that a more accurate representation of the two separate roughness areas was to assign a channel roughness to the main stream flow-path only (delineated by contour maps) and set a roughness value equivalent to a floodplain for the remaining model domain. The adopted values are shown in Figure 5. The selection of roughness values was subject to sensitivity testing as outlined in Section 9.1.3.



Figure 5: Manning's roughness

## MIKE Flood coupling

The MIKE Flood modelling package allows for the input of 1-D modelling elements (MIKE11) within the 2-D model domain (MIKE21). These links are known as 'couples'. For this Detailed Floodplain Study, bridges and culverts have been input into the model as 1-D elements to accurately assess the headloss through cross-drainage structures. All structures have been modelled implicitly with standard MIKE11 variables. Coupled locations are shown in Figure 6.

In order to maintain inundation extents post-development and as specified in the SEIS, floodplain relief culverts are proposed for the Diamond, Myra and Nibbereena Creek system at 50m spacing. These relief culverts consist of 900mm diameter Corrugated Steel Pipes (CSP). Through sensitivity testing it was determined that in order to minimise geometric grid-scale problems and minimising the required number of couples within the model, it was feasible to group 5 floodplain relief culverts from adjacent 2-D grid cells. This resulted in a grouping a 5/900mm CSP every 250m within the model.

S:\PRO-Projects\2010\CJVP10007 Alpha Coal – BFS\12 Project Documentation\12.5 Reports\CJVP10007-REP-C-016 Rev 0 - Diamond Creek-Myra Creek-Nibbereena Creek\CJVP10007-REP-C-016 Rev 0 - Diamond Creek-Myra Creek-Nibbereena Creek.doc





Figure 6: MIKE Flood couple locations

In addition to the floodplain relief culverts, the BFS proposed a single bridge span of 180m for Diamond Creek, 38/ 2400mm CSP culverts for Myra Creek and 54/ 2700mm CSP culverts for Nibbereena Creek. These were also inserted as couples into the MIKE Flood model.

## 9.1.3 Sensitivity Testing

Due to the lack of anecdotal evidence available to calibrate the hydraulic model, a sensitivity range of  $\pm$  30% on roughness values, inflow hydrographs and downstream boundary water levels was tested. Sensitivity testing was undertaken for the 50 year ARI event and for the pre-development case only at locations shown in Figure 7.



Figure 7: Sensitivity testing locations

Six locations were selected both upstream and downstream of the proposed railway alignment and included main channel and floodplain locations in order to assess the sensitivity of certain parameters on the predicted water levels and velocities.

## Manning's values

The value of Manning's 'M' (M=1/n) was adjusted by  $\pm 30\%$  to assess the impacts of this parameter on the predicted maximum inundation depths and velocities at the locations shown in Figure 7. The sensitivity of the Manning's 'M' value is shown below in Table 20.

| Location | Adopted value<br>(m) | +30%<br>value | Change (m) | -30% value | Change (m) |
|----------|----------------------|---------------|------------|------------|------------|
| 1        | 1.315                | 1.114         | -0.201     | 1.608      | 0.293      |
| 2        | 2.176                | 1.034         | -0.209     | 2.477      | 0.301      |
| 3        | 0.884                | 0.340         | -0.165     | 1.125      | 0.241      |
| 4        | 1.678                | 1.039         | -0.180     | 1.940      | 0.262      |
| 5        | 0.134                | 0.092         | -0.012     | 0.148      | 0.014      |
| 6        | 0.245                | 0.186         | -0.039     | 0.307      | 0.062      |

Table 20: Manning's 'M' value sensitivity (depth)

The Manning's value has an impact ranging from -210mm to +310mm on the predicted water surface level. This has an equivalent inundation extent impact of -4% and +7.5%, which is a relatively minor impact on the predicted extents.

At the same testing locations, the peak velocities were also extracted. From Table 21 it can be seen that there is an equivalent change in velocity as per the change in Manning's percentage. However the flow velocity change is small and remains in the same order of magnitude as the adopted existing case.

| Location | Adopted value<br>(m/s) | +30%<br>value | Change (%) | -30% value | Change (%) |
|----------|------------------------|---------------|------------|------------|------------|
| 1        | 0.283                  | 0.334         | 18.0       | 0.227      | -19.8      |
| 2        | 0.875                  | 1.034         | 18.2       | 0.690      | -21.1      |
| 3        | 0.305                  | 0.340         | 11.5       | 0.255      | -16.4      |
| 4        | 0.852                  | 1.039         | 21.9       | 0.642      | -24.6      |
| 5        | 0.075                  | 0.092         | 22.7       | 0.056      | -25.3      |
| 6        | 0.160                  | 0.186         | 16.3       | 0.129      | -19.4      |

| Table 21: | Manning's | 'M' value | sensitivity | (velocity) |
|-----------|-----------|-----------|-------------|------------|
|-----------|-----------|-----------|-------------|------------|

## Inflow hydrographs

The inflow values were adjusted by  $\pm 30\%$  to assess the impacts of this parameter on the predicted maximum inundation depths at the locations shown in Table 22.

| Location | Adopted value<br>(m) | + 30%<br>value | Change (m) | -30%<br>value | Change (m) |
|----------|----------------------|----------------|------------|---------------|------------|
| 1        | 1.315                | 1.528          | 0.213      | 1.060         | -0.255     |
| 2        | 2.176                | 2.397          | 0.221      | 1.904         | -0.272     |
| 3        | 0.884                | 1.059          | 0.175      | 0.674         | -0.210     |
| 4        | 1.678                | 0.874          | 0.196      | 1.438         | -0.240     |
| 5        | 0.134                | 0.173          | 0.039      | 0.093         | -0.041     |
| 6        | 0.245                | 0.292          | 0.047      | 0.192         | -0.053     |

## Table 22: Inflow hydrograph sensitivity

The inflow values have an impact ranging from -280mm to +250mm on the predicted water surface level. This has an equivalent inundation extent impact of -7.1% and +6.5%, which is a relatively minor impact on the predicted extents.

## Downstream boundary

The downstream boundary water surface levels were adjusted by  $\pm 30\%$  to assess the impacts of this parameter on the predicted maximum inundation depths at the locations shown in Table 23.

| Location | Adopted value<br>(m) | +30%<br>value | Change (m) | -30%<br>value | Change (m) |
|----------|----------------------|---------------|------------|---------------|------------|
| 1        | 1.315                | 1.315         | 0.0        | 1.315         | 0.0        |
| 2        | 2.176                | 2.176         | 0.0        | 2.176         | 0.0        |
| 3        | 0.884                | 0.884         | 0.0        | 0.884         | 0.0        |
| 4        | 1.678                | 1.678         | 0.0        | 1.678         | 0.0        |
| 5        | 0.134                | 0.134         | 0.0        | 0.134         | 0.0        |
| 6        | 0.245                | 0.245         | 0.0        | 0.245         | 0.0        |

Table 23: Downstream boundary sensitivity

The downstream boundary level has no predicted impacted on the predicted water surface levels at areas near the proposed railway alignment.

The sensitivity analysis has shown that the magnitude of the hydraulic model inflows has the most significant impact on the predicted water surface levels within the 2-D model. Although the relative change in level is high when compared to the predicted water depth, the change in inundation extent is minimal.

Conservative values for all variables have been adopted as part of this study. It is considered that the outcomes of the study are adequate without hydraulic model calibration and are conservative in nature.

#### 9.2 Floodplain Drainage Structure Recommendations

As discussed in previous sections, with the additional data received and incorporated as part of the Detailed Floodplain Study, additional analysis was required on the proposed BFS cross-drainage infrastructure in order to demonstrate that the impacts of the proposed ACP rail alignment could be mitigated to levels that comply with the EIS and SEIS. This resulted in a significant increase in the cross-drainage infrastructure.

The following additional cross-drainage structures are proposed to meet the EIS, SEIS and stakeholder requirements for the system. For Diamond Creek, an additional 200/2700mm and 60/1500mm diameter supplementary CSPs are recommended in order to minimise the impacts of the railway. Myra Creek required an additional 158/2700mm diameter supplementary CSPs instead of the BFS proposed structures. Nibbereena Creek required an additional 21/2700mm diameter supplementary CSPs. The approximate location of the above structures are shown in Figure 8.

Floodplain relief culverts are required at 50m spacing across the floodplains between Logan-Brown inflows, Diamond Creek, Myra Creek and Nibbereena Creek.



Document No:

Revision No:

Issue Date:

Page No:



Figure 8: Proposed structure locations

## 9.3 Results

Following the collation of information received from Landholders during the consultation process, the findings from this Detailed Floodplain Study have been presented to specific Landholders who have an interest in and/or are influenced by the proposed Alpha Coal rail alignment and its impact on the Diamond/Myra/Nibbereena Creek floodplain system.

Feedback from Landholders though continued consultation has shown the predevelopment flood modelling correlates well with what has been observed on-site during major flood events. The post-development models utilise the same hydrologic parameters and same hydraulic modelling methods as the pre-development models to ensure consistency. Preliminary drainage structures have been modelled in the post-development case to conform to the SEIS requirements.

Peak floodplain inundation depths, water surface elevations, velocities and inundation extents have all been plotted and are shown in Appendix B.

Drawings include:

- Inundation extents:
  - 5, 50 and 100 year ARI events pre and post-development.
- Inundation depths:
  - 50 year ARI event post- development.
- Water surface elevations:
  - 50 year ARI event post- development.
- Velocity profiles:
  - 50 year ARI event post- development.
- Afflux:
  - 50 year ARI event.

A summary of the findings from the Detailed Floodplain Study compared to the SEIS drainage criteria is shown in Table 24.

| Design Aspect          | SEIS Design Criteria                                                                                                                                                                                           | Result Summary                                                                                                |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Inundation             | Acceptable increases in inundation                                                                                                                                                                             | Conforms to SEIS requirements.                                                                                |
| Extent                 | extent (above the existing conditions for<br>a given return period to the 50 year ARI<br>event) will be proposed where such an<br>increase will not alter rural land use and<br>result in significant impacts. | There is an overall decrease of 6.9% in inundation extent of the modelled area during the design flood event. |
| Inundation<br>Duration | Inundation duration not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.                                                             | Conforms to SEIS requirements.                                                                                |
| Max Velocity           | Bridge outlet velocity = maximum of 1.2<br>x existing velocity at a distance equal to<br>the bridge span downstream of bridge.                                                                                 | Conforms to SEIS requirements.                                                                                |
|                        | Culverts outlet velocity:                                                                                                                                                                                      | Refer Velocity drawing in Appendix<br>B for details.                                                          |
|                        | = 1.5m/s where erodible soils are<br>present                                                                                                                                                                   |                                                                                                               |
|                        | = 2.5m/s for normal soils (with no erosion control)                                                                                                                                                            |                                                                                                               |
| Maximum afflux         | Maximum 0.5m – normally (unless<br>justifiable).                                                                                                                                                               | Conforms to SEIS requirements.                                                                                |
|                        | Maximum 0.2m – around critical infrastructure.                                                                                                                                                                 | Refer Afflux drawing in Appendix B for details.                                                               |
|                        | Maximum 0.1m – around dwellings.                                                                                                                                                                               |                                                                                                               |

Table 24: Results Summary

Further to the above table, results show that there is a minimal change in overall inundation extents due to the current alignment and proposed floodplain drainage structures. This is shown below in Table 25.

| Issue Date: |
|-------------|
| Page No:    |
|             |

Document No:

Pevicion No.

| Event ARI (years) | % change in "wet" cells | Change in area (ha) |
|-------------------|-------------------------|---------------------|
| 5                 | -7.0                    | -908                |
| 50                | -6.9                    | -1549               |

With the inclusion of additional cross-drainage structures, the proposed ACP rail alignment will meet the afflux limits specified in the SEIS with the exception of minor localised areas. These areas are small in extent, localised to areas adjacent to the alignment and currently have no impact to existing infrastructure, inundation times, velocities and minimal increase in inundation extents. Afflux and velocity results for the nominated design criteria post-development meet the requirements of the SEIS and stakeholder requirements. Results are shown in Appendix B.

## Inundation Duration

One of the primary concerns of Landholders from the EIS and during the consultation process is related to the change in duration of inundation due to the development of the Alpha Coal rail alignment.

Detailed 2-D modelling with time-step analysis on areas of interest reports that inundation duration has been maintained across the floodplain to the requirements of the SEIS i.e.; inundation duration of not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.

It should be noted that the predicted impacts from the proposed railway extend up to the upstream model boundary for Diamond Creek and as such, the current model cannot be used to demonstrate the entire impacted area. An attempt was made to match the SRTM surface to the LiDAR however large irregularities between adjacent SRTM tiles meant that the area around Diamond Creek was unusable. In order to undertake further modelling, additional detailed survey data would be required further upstream from the proposed railway alignment. However, the maximum relative impact is less than 200mm at the upstream boundary during the design event. As this level is below the threshold for impacts under the SEIS conditions, the model extent is considered adequate for the purposes of this Detailed Floodplain Study.

## 10.0 CONCLUSION

Detailed hydrologic and hydraulic modelling has been completed for Diamond, Myra and Nibbereena Creeks at the proposed ACP rail alignment. It has been shown that the proposed railway can mitigate its hydraulic impacts to an acceptable level with only localised areas that exceed the limits placed on the project by the SEIS. The recommended cross-drainage structures for Diamond, Myra and Nibbereena Creek are shown below in Tables 26 to 29. Alternative drainage structures may be utilised providing equivalent hydraulic performance is maintained or improved.

#### Table 26: Diamond Creek

| Item                                    | Value                                                                   |
|-----------------------------------------|-------------------------------------------------------------------------|
| Proposed cross-drainage infrastructure. | 1/ 180m bridge, 200/ 2700mm and 60/ 1500mm diameter supplementary CSPs. |

#### Table 27: Myra Creek

| Item                                    | Value                      |
|-----------------------------------------|----------------------------|
| Proposed cross-drainage infrastructure. | 158/ 2700mm diameter CSPs. |

#### Table 28: Nibbereena Creek

| Item                                    | Value                                   |
|-----------------------------------------|-----------------------------------------|
| Proposed cross-drainage infrastructure. | 75/ 2700mm diameter supplementary CSPs. |

#### Table 29: Floodplain relief culverts

| Item                                    | Value                                          |
|-----------------------------------------|------------------------------------------------|
| Proposed cross-drainage infrastructure. | 900mm diameter CSPs at 50m in the floodplains. |

The findings can be further optimised when further hydraulic analysis is undertaken during the Detailed Design phase of the project.

| Calibre                                                                   | Document No: | HC-CRL-24100-RPT-0138 |
|---------------------------------------------------------------------------|--------------|-----------------------|
| Alpha Coal Project – Rail                                                 |              | CJVP10007-REP-C-016   |
| Detailed Floodplain Study – Diamond Creek - Myra Creek - Nibbereena Creek | Revision No: | Rev 0                 |
|                                                                           | Issue Date:  | November 2011         |
|                                                                           | Page No:     | 27                    |

## APPENDIX A RORB PARAMETERS AND RESULTS

## Diamond Creek Catchment Deliniation



## Myra Creek Catchment Deliniation



## Nibbereena Creek Catchment Deliniation



# Kc and m parameters - Diamond creek

| Diamond Creek               |          |                         |                 |                                                |
|-----------------------------|----------|-------------------------|-----------------|------------------------------------------------|
| Catchment area              |          | 1470                    | km <sup>2</sup> | <i>и</i> – – – – – – – – – – – – – – – – – – – |
| d <sub>av</sub>             |          | 38.47                   | km              | (from RORB model)                              |
| K <sub>c</sub> (Weeks, QLD) |          | 41.99                   |                 |                                                |
| adjusted K                  |          | 37.05110                |                 |                                                |
|                             |          | 0.047                   |                 | for 0.0                                        |
| m                           |          | 0.847                   |                 | 10r 0.6 <m<1.2< td=""></m<1.2<>                |
| LHS                         | 0.963119 | RHS (goal s<br>0.963119 | seek to LH      | S by changing m)                               |
| RORB manual                 |          | Iteration1              |                 |                                                |

| K <sub>c</sub> | 61.39806               |
|----------------|------------------------|
| Q <sub>p</sub> | 1147 m <sup>3</sup> /s |
| m <sub>1</sub> | 0.85                   |

# Kc and m parameters - Myra creek

 $f Q_p \ m_1$ 

| Myra Creek<br>ARR Book 5 |          |                        |                 |                                 |
|--------------------------|----------|------------------------|-----------------|---------------------------------|
| Catchment area           |          | 347.7                  | km <sup>2</sup> |                                 |
| d <sub>av</sub>          |          | 44.13                  | km              | (from RORB model)               |
| $K_c$ (Weeks, QLD)       |          | 19.56                  |                 |                                 |
| r                        |          |                        |                 |                                 |
| adjusted $K_c$           |          | 21.34484               |                 |                                 |
| m                        |          | 1.0088                 |                 | for 0.6 <m<1.2< th=""></m<1.2<> |
| LHS                      | 0.483681 | RHS (goal<br>0.483681  | seek to LH      | S by changing m)                |
| RORB manual              |          | Iteration1<br>26.96383 |                 |                                 |

500 m<sup>3</sup>/s

0.876

# Kc and m parameters - Nibbereena creek

| Nibbereena Cree    | k        |                         |            |                                 |
|--------------------|----------|-------------------------|------------|---------------------------------|
| ARR Book 5         |          |                         |            |                                 |
| Catchment area     |          | 172.8                   | km²        |                                 |
| d <sub>av</sub>    |          | 19.26                   | km         | (from RORB model)               |
| $K_c$ (Weeks, QLD) |          | 13.50                   |            |                                 |
|                    |          |                         |            |                                 |
| adjusted $K_c$     |          | 18.54967                |            |                                 |
| m                  |          | 0.847                   |            | for 0.6 <m<1.2< td=""></m<1.2<> |
| LHS                | 0.963119 | RHS (goal s<br>0.963119 | seek to LH | S by changing m)                |
| RORB manual        |          | Iteration1              |            |                                 |

| NOND manual           | ILEI ALIOITT          |
|-----------------------|-----------------------|
| K <sub>c</sub>        | 19.00864              |
| Q <sub>p</sub>        | 500 m <sup>3</sup> /s |
| <b>m</b> <sub>1</sub> | 0.876                 |






Diamond Creek\_30h50y RORBWin Output File Program version 6.15 (last updated 30th March 2010) Copyright Monash University and Sinclair Knight Merz Date run: 11 Oct 2011 20:34 Vector file : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Diamond Creek\RORB\Diamond Creek.catg Storm file : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Piebald Creek\RORB\Diamond Creek\_30h50y.stm Output information: Flows & all input data Data checks: \*\*\*\*\*\* Next data to be read & checked: Catchment name & reach type flag Control vector & storage data Code no. 63 7.0 Location read as Subcatchment: 1.12 Sub-area areas Impervious flag Initial storm data Rainfall burst times Pluviograph 1 Sub-area rainfalls Data check completed Data: \*\*\*\* Diamond Creek Time data, in increments from initial time Diamond Creek: 30 hour 50 year Design Storm Time increment (hours)= 2.00 Finish Start Rainfall times: 0 15 End of hyeto/hydrographs: 15 Duration of calculations: 100 Pluviograph data (time in incs, rainfall in mm, in increment following time shown) 1:Temporal pattern (% of depth Time 1 1.9 0 25.3 1 2 3 5.1 4 1.1 5 3.6 1.5 2.3 2.9 6 7 8 9.3 9 10 7.5

Diamond Creek\_30h50y

| 11 | 16.1 |
|----|------|
| 12 | 12.0 |
| 13 | 6.4  |
| 14 | 0.8  |

Total 100.0

#### DESIGN run control vector

| Step | Code | Description                                         |      |
|------|------|-----------------------------------------------------|------|
| 1    | 1    | Add sub-area 'A' inflow & route thru normal storage | 1    |
| 2    | 5    | Route hydrograph thru normal storage 2              | _    |
| 3    | 2    | Add sub-area 'B' inflow & route thru normal storage | 3    |
| 4    | 5    | Route hydrograph thru normal storage 4              | _    |
| 5    | 2    | Add sub-area 'C' inflow & route thru normal storage | 5    |
| 6    | 5    | Route hydrograph thru normal storage 6              |      |
| 7    | 3    | Store hydrograph from step 6; reset hydrograph to   | zero |
| 8    | 1    | Add sub-area 'D' inflow & route thru normal storage | 7    |
| 9    | 5    | Route hydrograph thru normal storage 8              |      |
| 10   | 4    | Add h-graph ex step 7 to h-graph ex step 9          |      |
| 11   | 2    | Add sub-area 'E' inflow & route thru normal storage | 9    |
| 12   | 5    | Route hydrograph thru normal storage 10             |      |
| 13   | 2    | Add sub-area 'F' inflow & route thru normal storage | 11   |
| 14   | 5    | Route hydrograph thru normal storage 12             |      |
| 15   | 2    | Add sub-area 'G' inflow & route thru normal storage | 13   |
| 16   | 5    | Route hydrograph thru normal storage 14             |      |
| 17   | 2    | Add sub-area 'H' inflow & route thru normal storage | 15   |
| 18   | 5    | Route hydrograph thru normal storage 16             |      |
| 19   | 3    | Store hydrograph from step 18; reset hydrograph to  | zero |
| 20   | 1    | Add sub-area 'I' inflow & route thru normal storage | 17   |
| 21   | 5    | Route hydrograph thru normal storage 18             |      |
| 22   | 2    | Add sub-area 'J' inflow & route thru normal storage | 19   |
| 23   | 5    | Route hydrograph thru normal storage 20             |      |
| 24   | 4    | Add h-graph ex step 19 to h-graph ex step 23        |      |
| 25   | 3    | Store hydrograph from step 24: reset hydrograph to  | zero |
| 26   | 1    | Add sub-area 'K' inflow & route thru normal storage | 21   |
| 27   | 5    | Route hydrograph thru normal storage 22             |      |
| 28   | 4    | Add h-graph ex step 25 to h-graph ex step 27        |      |
| 29   | 2    | Add sub-area 'L' inflow & route thru normal storage | 23   |
| 30   | 5    | Route hydrograph thru normal storage 24             |      |
| 31   | 2    | Add sub-area 'M' inflow & route thru normal storage | 25   |
| 32   | 5    | Route hydrograph thru normal storage 26             |      |
| 33   | 3    | Store hydrograph from step 32: reset hydrograph to  | zero |
| 34   | 1    | Add sub-area 'N' inflow & route thru normal storage | 27   |
| 35   | 5    | Route hydrograph thru normal storage 28             |      |
| 36   | 4    | Add h-graph ex step 33 to h-graph ex step 35        |      |
| 37   | 2    | Add sub-area 'O' inflow & route thru normal storage | 29   |
| 38   | 5    | Route hydrograph thru normal storage 30             |      |
| 39   | 2    | Add sub-area 'P' inflow & route thru normal storage | 31   |
| 40   | 5    | Route hydrograph thru normal storage 32             | -    |
| 41   | 3    | Store hydrograph from step 40: reset hydrograph to  | zero |
| 42   | 1    | Add sub-area 'O' inflow & route thru normal storage | 33   |
| 43   | 5    | Route hydrograph thru normal storage 34             |      |
| 44   | 2    | Add sub-area 'R' inflow & route thru normal storage | 35   |
| 45   | 5    | Route hydrograph thru normal storage 36             |      |
| 46   | 2    | Add sub-area 'S' inflow & route thru normal storage | 37   |
| 47   | 5    | Route hydrograph thru normal storage 38             | •    |
| 48   | 3    | Store hydrograph from step 47: reset hydrograph to  | zero |
| 49   | 1    | Add sub-area 'T' inflow & route thru normal storage | 39   |
| 50   | 5    | Route hydrograph thru normal storage 40             |      |
| 51   | 4    | Add h-graph ex step 48 to h-graph ex step 50        |      |
| 52   | 2    | Add sub-area 'U' inflow & route thru normal storage | 41   |
| 53   | 5    | Route hydrograph thru normal storage 42             | . —  |
| 54   | 2    | Add sub-area 'V' inflow & route thru normal storage | 43   |
| 55   | 5    | Route hydrograph thru normal storage 44             |      |
| 55   | 5    |                                                     |      |
|      |      | raye z                                              |      |

|    |     | Diamond Creek_30h50y                                |    |
|----|-----|-----------------------------------------------------|----|
| 56 | 2   | Add sub-area 'W' inflow & route thru normal storage | 45 |
| 57 | 5   | Route hydrograph thru normal storage 46             |    |
| 58 | 2   | Add sub-area 'X' inflow & route thru normal storage | 47 |
| 59 | 5   | Route hydrograph thru normal storage 48             |    |
| 60 | 2   | Add sub-area 'Y' inflow & route thru normal storage | 49 |
| 61 | 5   | Route hydrograph thru normal storage 50             |    |
| 62 | 4   | Add h-graph ex step 41 to h-graph ex step 61        |    |
| 63 | 7.0 | Print hydrograph, Subcatchment: 1.12                |    |
| 64 | 2   | Add sub-area 'z' inflow & route thru normal storage | 51 |
| 65 | 0   | *************End of control vector**********        |    |

#### Sub-area data

| Sub-<br>area<br>BCDEFGHIJKLMN0 | Area<br>km <sup>2</sup><br>6.79E+01<br>6.25E+01<br>5.00E+01<br>6.99E+01<br>5.28E+01<br>5.05E+01<br>5.46E+01<br>5.92E+01<br>5.99E+01<br>6.04E+01<br>5.25E+01 | Dist.<br>km*<br>7.56E+01<br>6.44E+01<br>5.71E+01<br>6.55E+01<br>4.98E+01<br>4.25E+01<br>3.75E+01<br>3.19E+01<br>4.64E+01<br>3.27E+01<br>2.53E+01<br>2.03E+01<br>2.48E+01<br>1.77E+01 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O                              | 5.26E+01                                                                                                                                                    | 1.77E+01                                                                                                                                                                             |
| P                              | 6.92E+01                                                                                                                                                    | 1.21E+01                                                                                                                                                                             |
| Q                              | 5.00E+01                                                                                                                                                    | 6.83E+01                                                                                                                                                                             |
| R                              | 5.32E+01                                                                                                                                                    | 5.57E+01                                                                                                                                                                             |
| S                              | 5.16E+01                                                                                                                                                    | 4.67E+01                                                                                                                                                                             |
| T                              | 5.04E+01                                                                                                                                                    | 4 72E+01                                                                                                                                                                             |
| Ů                              | 5.01E+01                                                                                                                                                    | 4.01E+01                                                                                                                                                                             |
| W                              | 5.28E+01                                                                                                                                                    | 2.90E+01                                                                                                                                                                             |
| X                              | 5.12E+01                                                                                                                                                    | 2.43E+01                                                                                                                                                                             |
| Y                              | 5.86E+01                                                                                                                                                    | 1.50E+01                                                                                                                                                                             |
| ż                              | 6.66E+01                                                                                                                                                    | 3.40E+00                                                                                                                                                                             |

#### Total 1.470E+03

For whole catchment ; Av. Dist., km\* = 38.47 For interstation area 1; Av. Dist., km\* = 38.47; ISA Factor = 1.000

\* or other function of reach properties related to travel time

#### Normal storage data

| Storage | Length | Rel. delay | Туре    | Slope   |
|---------|--------|------------|---------|---------|
| no.     | km*    | time       |         | percent |
| 1       | 7.5    | 0.194      | Natural |         |
| 2       | 3.8    | 0.098      | Natural |         |
| 3       | 3.8    | 0.098      | Natural |         |
| 4       | 3.5    | 0.092      | Natural |         |
| 5       | 3.5    | 0.092      | Natural |         |
| 6       | 3.7    | 0.097      | Natural |         |
| 7       | 12.0   | 0.311      | Natural |         |
| 8       | 3.7    | 0.097      | Natural |         |
| 9       | 3.7    | 0.097      | Natural |         |
| 10      | 3.5    | 0.092      | Natural |         |
| 11      | 3.5    | 0.092      | Natural |         |
|         |        |            | Page 3  |         |
|         |        |            |         |         |

|                      |            |          | Diamond Creek_30h50y  |          |      |  |  |  |  |
|----------------------|------------|----------|-----------------------|----------|------|--|--|--|--|
| 12                   | 1.5        | 0.040    | Natural               |          |      |  |  |  |  |
| 13                   | 1.5        | 0.040    | Natural               |          |      |  |  |  |  |
| 14                   | 4.0        | 0.104    | Natural               |          |      |  |  |  |  |
| 15                   | 4.0        | 0.104    | Natural               |          |      |  |  |  |  |
| 16                   | 2.6        | 0.069    | Natural               |          |      |  |  |  |  |
| 17                   | 9.0        | 0.233    | Natural               |          |      |  |  |  |  |
| 18                   | 4.8        | 0.124    | Natural               |          |      |  |  |  |  |
| 19                   | 4.8        | 0.124    | Natural               |          |      |  |  |  |  |
| 20                   | 2.6        | 0.069    | Natural               |          |      |  |  |  |  |
| 21                   | 7.6        | 0.199    | Natural               |          |      |  |  |  |  |
| 22                   | 2.6        | 0.069    | Natural               |          |      |  |  |  |  |
| 23                   | 2.6        | 0.069    | Natural               |          |      |  |  |  |  |
| 24                   | 2.4        | 0.062    | Natural               |          |      |  |  |  |  |
| 25                   | 2.4        | 0.062    | Natural               |          |      |  |  |  |  |
| 26                   | 0.2        | 0.006    | Natural               |          |      |  |  |  |  |
| 27                   | 6.9        | 0.180    | Natural               |          |      |  |  |  |  |
| 28                   | 0.2        | 0.006    | Natura                |          |      |  |  |  |  |
| 29                   | 0.2        | 0.006    | Natura                |          |      |  |  |  |  |
| 30                   | 5.3        | 0.138    | Natural               |          |      |  |  |  |  |
| 31                   | 5.3        | 0.138    | Natural               |          |      |  |  |  |  |
| 32                   | 3.4        | 0.089    | Natural               |          |      |  |  |  |  |
| 33                   | 8.3        | 0.215    | Natural               |          |      |  |  |  |  |
| 34                   | 4.3        | 0.112    | Natural               |          |      |  |  |  |  |
| 35                   | 4.3        | 0.112    | Natural               |          |      |  |  |  |  |
| 30                   | 4.6        | 0.120    | Natural               |          |      |  |  |  |  |
| 3/                   | 4.6        | 0.120    | Natural               |          |      |  |  |  |  |
| 38                   | 2.0        | 0.052    | Natural               |          |      |  |  |  |  |
| 39                   | 5.1        | 0.132    | Natural               |          |      |  |  |  |  |
| 40                   | 2.0        | 0.052    | Natural               |          |      |  |  |  |  |
| 41                   | 2.0        | 0.052    | Natural               |          |      |  |  |  |  |
| 42                   | 2.8        | 0.072    | Natural               |          |      |  |  |  |  |
| 43                   | 2.0        | 0.072    | Natural               |          |      |  |  |  |  |
| 44<br>15             | 3.3<br>2 E | 0.091    | Natural               |          |      |  |  |  |  |
| 45                   | 5.5<br>1 7 | 0.091    | Natural               |          |      |  |  |  |  |
| 40                   | 1.2        | 0.031    | Natural               |          |      |  |  |  |  |
| 47                   | 1.2<br>8 2 | 0.031    | Natural               |          |      |  |  |  |  |
| 40                   | 0.2<br>0.2 | 0.212    | Natural               |          |      |  |  |  |  |
| 49                   | 0.2        | 0.212    | Natural               |          |      |  |  |  |  |
| 50                   | 2 /        | 0.089    | Natural               |          |      |  |  |  |  |
| JT                   | 5.4        | 0.089    | Natural               |          |      |  |  |  |  |
| * or other           | function o | of reach | properties related to | o travel | time |  |  |  |  |
| Input of parameters: |            |          |                       |          |      |  |  |  |  |

Diamond Creek DESIGN Run Diamond Creek: 30 hour 50 year Design Storm Time increment = 2.00 hours

Constant loss model selected

| Ra<br>T  | ain:<br>ime | Fall, mm, | in | time<br>Su | inc<br>b- | . fo | llow | ing | time | sho | wn |    |    |    |    |    |    |    |
|----------|-------------|-----------|----|------------|-----------|------|------|-----|------|-----|----|----|----|----|----|----|----|----|
|          |             | Catch     |    | Ar         | ea        |      |      |     |      |     |    |    |    |    |    |    |    |    |
| Ir       | าตร         | ment      |    | Α          | В         | С    | D    | E   | F    | G   | н  | I  | J  | К  | L  | М  | Ν  | 0  |
| Ρ        |             |           |    |            |           |      |      |     |      |     |    |    |    |    |    |    |    |    |
| Л        | 0           | 3.9       |    | 4          | 4         | 4    | 4    | 4   | 4    | 4   | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| +<br>5 2 | 1           | 52.6      |    | 53         | 53        | 53   | 53   | 53  | 53   | 53  | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 |
| 9        | 2           | 8.7       |    | 9          | 9         | 9    | 9    | 9   | 9    | 9   | 9  | 9  | 9  | 9  | 9  | 9  | 9  | 9  |

| 3                                                                            | 10.6                                                                                                                         |       | 11                                                                                             | 11                                                                              | 11                                                                              | D1 ai<br>11                                                                     | nond<br>11                                                                      | Creo<br>11                                                                      | ek_30<br>11                                                                     | 0h50 <u>y</u><br>11                                                             | y<br>11                                                                         | 11                                                                              | 11  | 11  | 11  | 11  | 11  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
| 11<br>4                                                                      | 2.3                                                                                                                          |       | 2                                                                                              | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2   | 2   | 2   | 2   | 2   |
| 2<br>5                                                                       | 7.5                                                                                                                          |       | 7                                                                                              | 7                                                                               | 7                                                                               | 7                                                                               | 7                                                                               | 7                                                                               | 7                                                                               | 7                                                                               | 7                                                                               | 7                                                                               | 7   | 7   | 7   | 7   | 7   |
| <u>6</u>                                                                     | 3.1                                                                                                                          |       | 3                                                                                              | 3                                                                               | 3                                                                               | 3                                                                               | 3                                                                               | 3                                                                               | 3                                                                               | 3                                                                               | 3                                                                               | 3                                                                               | 3   | 3   | 3   | 3   | 3   |
| 3<br>7                                                                       | 4.8                                                                                                                          |       | 5                                                                                              | 5                                                                               | 5                                                                               | 5                                                                               | 5                                                                               | 5                                                                               | 5                                                                               | 5                                                                               | 5                                                                               | 5                                                                               | 5   | 5   | 5   | 5   | 5   |
| 5<br>8                                                                       | 6.0                                                                                                                          |       | 6                                                                                              | 6                                                                               | 6                                                                               | 6                                                                               | 6                                                                               | 6                                                                               | 6                                                                               | 6                                                                               | 6                                                                               | 6                                                                               | 6   | 6   | 6   | 6   | 6   |
| 9<br>10                                                                      | 19.3                                                                                                                         |       | 19                                                                                             | 19                                                                              | 19                                                                              | 19                                                                              | 19                                                                              | 19                                                                              | 19                                                                              | 19                                                                              | 19                                                                              | 19                                                                              | 19  | 19  | 19  | 19  | 19  |
| 19<br>10                                                                     | 15.6                                                                                                                         |       | 16                                                                                             | 16                                                                              | 16                                                                              | 16                                                                              | 16                                                                              | 16                                                                              | 16                                                                              | 16                                                                              | 16                                                                              | 16                                                                              | 16  | 16  | 16  | 16  | 16  |
| 10<br>11                                                                     | 33.4                                                                                                                         |       | 33                                                                                             | 33                                                                              | 33                                                                              | 33                                                                              | 33                                                                              | 33                                                                              | 33                                                                              | 33                                                                              | 33                                                                              | 33                                                                              | 33  | 33  | 33  | 33  | 33  |
| 25<br>12                                                                     | 24.9                                                                                                                         |       | 25                                                                                             | 25                                                                              | 25                                                                              | 25                                                                              | 25                                                                              | 25                                                                              | 25                                                                              | 25                                                                              | 25                                                                              | 25                                                                              | 25  | 25  | 25  | 25  | 25  |
| 25<br>13                                                                     | 13.3                                                                                                                         |       | 13                                                                                             | 13                                                                              | 13                                                                              | 13                                                                              | 13                                                                              | 13                                                                              | 13                                                                              | 13                                                                              | 13                                                                              | 13                                                                              | 13  | 13  | 13  | 13  | 13  |
| 13<br>14<br>2                                                                | 1.7                                                                                                                          |       | 2                                                                                              | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2                                                                               | 2   | 2   | 2   | 2   | 2   |
| Tot.                                                                         | 207.7                                                                                                                        |       | 208                                                                                            | 208                                                                             | 208                                                                             | 208                                                                             | 208                                                                             | 208                                                                             | 208                                                                             | 208                                                                             | 208                                                                             | 208                                                                             | 208 | 208 | 208 | 208 | 208 |
| Pluv<br>1                                                                    | i. ref.                                                                                                                      | no.   | 1                                                                                              | 1                                                                               | 1                                                                               | 1                                                                               | 1                                                                               | 1                                                                               | 1                                                                               | 1                                                                               | 1                                                                               | 1                                                                               | 1   | 1   | 1   | 1   | 1   |
| Time<br>Incs                                                                 | Catch<br>ment                                                                                                                |       | Si<br>Ai<br>Q                                                                                  | ub-<br>rea<br>R                                                                 | S                                                                               | т                                                                               | U                                                                               | v                                                                               | W                                                                               | x                                                                               | Y                                                                               | Z                                                                               |     |     |     |     |     |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | $\begin{array}{c} 3.9\\ 52.6\\ 8.7\\ 10.6\\ 2.3\\ 7.5\\ 3.1\\ 4.8\\ 6.0\\ 19.3\\ 15.6\\ 33.4\\ 24.9\\ 13.3\\ 1.7\end{array}$ |       | 4<br>53<br>9<br>11<br>2<br>7<br>3<br>5<br>6<br>19<br>16<br>33<br>25<br>13<br>2<br>5<br>13<br>2 | 4<br>53<br>9<br>11<br>2<br>7<br>3<br>5<br>6<br>19<br>16<br>33<br>25<br>13<br>25 |     |     |     |     |     |
| Tot.<br>Pluv                                                                 | 207.7<br>i. ref.                                                                                                             | no.   | 208<br>1                                                                                       | 208<br>1                                                                        | 208<br>1                                                                        | 208<br>1                                                                        | 208<br>1                                                                        | 208<br>1                                                                        | 208<br>1                                                                        | 208<br>1                                                                        | 208<br>1                                                                        | 208<br>1                                                                        |     |     |     |     |     |
| Rain <sup>.</sup><br>Time                                                    | fall-exe                                                                                                                     | cess, | mm,<br>Si                                                                                      | in t<br>ub-                                                                     | time                                                                            | inc                                                                             | . fo                                                                            | 11ow <sup>-</sup>                                                               | ing 1                                                                           | time                                                                            | show                                                                            | vn                                                                              |     |     |     |     |     |
| Incs<br>P                                                                    | catch<br>ment                                                                                                                |       | A                                                                                              | rea<br>B                                                                        | C                                                                               | D                                                                               | E                                                                               | F                                                                               | G                                                                               | н                                                                               | I                                                                               | J                                                                               | К   | L   | М   | N   | 0   |
| 0                                                                            | 0.0                                                                                                                          |       | 0                                                                                              | 0                                                                               | 0                                                                               | 0                                                                               | 0                                                                               | 0                                                                               | 0                                                                               | 0                                                                               | 0                                                                               | 0                                                                               | 0   | 0   | 0   | 0   | 0   |
| 1<br>26                                                                      | 26.5                                                                                                                         |       | 26                                                                                             | 26                                                                              | 26                                                                              | 26                                                                              | 26                                                                              | 26                                                                              | 26                                                                              | 26                                                                              | 26                                                                              | 26                                                                              | 26  | 26  | 26  | 26  | 26  |
| 2                                                                            | 3.7                                                                                                                          |       | 4                                                                                              | 4                                                                               | 4                                                                               | 4                                                                               | 4                                                                               | 4                                                                               | 4                                                                               | 4                                                                               | 4                                                                               | 4                                                                               | 4   | 4   | 4   | 4   | 4   |
| -7                                                                           |                                                                                                                              |       |                                                                                                |                                                                                 |                                                                                 |                                                                                 |                                                                                 | Page                                                                            | 5                                                                               |                                                                                 |                                                                                 |                                                                                 |     |     |     |     |     |

| 5.6<br>0.0                                                                                          | 6<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                              | 6                                       | 6                                       | 6                                       | 6                                       | 6                                       |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| 0.0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                                         |                                         |                                         |                                         |                                         |
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                              | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       |
| 2.5                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                              | 2                                       | 2                                       | 2                                       | 2                                       | 2                                       |
| 0.0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                              | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       |
| 0.0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                              | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       |
| 1.0                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                              | 1                                       | 1                                       | 1                                       | 1                                       | 1                                       |
| 14.3                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                             | 14                                      | 14                                      | 14                                      | 14                                      | 14                                      |
| 10.6                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                             | 11                                      | 11                                      | 11                                      | 11                                      | 11                                      |
| 28.4                                                                                                | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                             | 28                                      | 28                                      | 28                                      | 28                                      | 28                                      |
| 19.9                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                             | 20                                      | 20                                      | 20                                      | 20                                      | 20                                      |
| 8.3                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                              | 8                                       | 8                                       | 8                                       | 8                                       | 8                                       |
| 0.0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                              | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       |
| 120.9                                                                                               | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121                                                                            | 121                                     | 121                                     | 121                                     | 121                                     | 121                                     |
| 2                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                                         |                                         |                                         |                                         |                                         |
| catc<br>ment                                                                                        | n A<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rea<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                                                                                                                                                                                                                 | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z                                                                              |                                         |                                         |                                         |                                         |                                         |
| 0.0<br>26.5<br>3.7<br>5.6<br>0.0<br>2.5<br>0.0<br>1.0<br>14.3<br>10.6<br>28.4<br>19.9<br>8.3<br>0.0 | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>0<br>1<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                    | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>26<br>4<br>6<br>0<br>2<br>0<br>1<br>14<br>11<br>28<br>20<br>8<br>0<br>121 |                                         |                                         |                                         |                                         |                                         |
| calcu                                                                                               | esults:<br>******<br>reek<br>reek: 30 ho<br>n no. 1<br>s: kc =<br>meters<br>lated hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ur 50<br>61.4<br>Init <sup>-</sup><br>grapł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) yea<br>40<br>1a1 1<br>25.                                                                                                                                                                                                                                                                                                                                                                                                       | m =<br>m =<br>loss<br>.00<br>Subc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | esigr<br>= 0.8<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35<br>) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 10s<br>2.5(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ss (n<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nm/h)                                                                          | )                                       |                                         |                                         |                                         |                                         |
|                                                                                                     | 2.5<br>0.0<br>0.0<br>1.0<br>14.3<br>10.6<br>28.4<br>19.9<br>8.3<br>0.0<br>.120.9<br>Catco<br>5 ment<br>0.0<br>26.5<br>3.7<br>5.6<br>0.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>0.0<br>2.5<br>0.0<br>0.0<br>2.5<br>0.0<br>0.0<br>1.0<br>2.5<br>0.0<br>0.0<br>1.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>2.5<br>0.0<br>0.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 2.5 2<br>0.0 0<br>0.0 0<br>1.0 1<br>14.3 14<br>10.6 11<br>28.4 28<br>19.9 20<br>8.3 8<br>0.0 0<br>.120.9 121<br>$\frac{2}{5}$ 26<br>3.7 4<br>5.6 6<br>0.0 0<br>2.5 26<br>3.7 4<br>5.6 6<br>0.0 0<br>2.5 26<br>3.7 4<br>5.6 6<br>0.0 0<br>1.0 1<br>14.3 14<br>10.6 11<br>28.4 28<br>9 20<br>0.0 0<br>2.5 26<br>3.7 4<br>5.6 6<br>0.0 0<br>0.0 0<br>1.0 1<br>14.3 14<br>10.6 11<br>28.4 28<br>19.9 20<br>0.0 0<br>2.5 26<br>3.7 4<br>5.6 6<br>0.0 0<br>0.0 0<br>1.0 1<br>14.3 14<br>10.6 11<br>28.4 28<br>19.9 20<br>0.0 0<br>0.0 0<br>0.0 0<br>0.0 0<br>0.0 0<br>1.0 1<br>14.3 14<br>10.6 11<br>28.4 28<br>19.9 20<br>8.3 8<br>0.0 0<br>0.0 0<br>1.0 1<br>14.3 14<br>10.6 11<br>28.4 28<br>19.9 20<br>8.3 8<br>0.0 0<br>0.0 0<br>0.0 0<br>0.0 0<br>0.0 0<br>1.0 1<br>14.3 14<br>10.6 11<br>28.4 28<br>19.9 20<br>8.3 8<br>0.0 0<br>0.0 0<br>0. | 2.5       2       2         0.0       0       0         0.0       0       0         1.0       1       1         14.3       14       14         10.6       11       11         28.4       28       28         19.9       20       20         8.3       8       8         0.0       0       0         .120.9       121       121         2       2       2         0.0       0       0         .120.9       121       121         2 | 2.5 2 2 2<br>0.0 0 0 0<br>0.0 0 0 0<br>1.0 1 1 1<br>14.3 14 14 14<br>10.6 11 11 11<br>28.4 28 28 28<br>19.9 20 20 20<br>8.3 8 8<br>0.0 0 0 0<br>.120.9 121 121 121<br>2<br>Catch Area<br>5 26 26 26<br>3.7 4 4 4<br>5.6 6 6 6<br>0.0 0 0 0<br>2.5 2 2 2<br>0.0 0 0 0<br>0 0<br>1.0 1 1<br>1.4.3 14 14 14<br>1.28.4 28 28<br>2.8 28<br>0.0 0 0 0<br>2.5 26 26 26<br>3.7 4 4 4<br>5.6 6 6 6<br>0.0 0 0<br>0.0 0 0<br>0.0 0 0<br>1.0 1 1<br>1.1 11<br>28.4 28 28 28<br>19.9 20 20 20<br>0.0 0 0 0<br>0.0 0 0<br>1.0 1 1<br>1.1 11<br>2.4 28 28 28<br>19.9 20 20 20<br>8.3 8 8<br>0.0 0 0 0<br>1.20.9 121 121 121<br>2.5 2 2<br>0.0 0 0 0<br>1.20.9 121 121 121<br>2.5 2<br>2.5 2<br>2.7 2<br>0.0 0 0<br>0.0 0<br>1.0 1 1<br>1.1 1<br>2.4 28 28 28<br>19.9 20 20 20<br>8.3 8 8<br>0.0 0 0<br>1.20.9 121 121 121<br>2.5 2.2 2<br>0.0 0 0<br>1.20.9 121 121 121<br>2.5 2.2 2<br>0.0 0 0<br>1.20.9 121 121 121<br>2.5 2.2 2<br>0.0 0 0<br>0.0 0 | 2.5 2 2 2 2<br>0.0 0 0 0 0<br>0.0 1 0 0 0<br>1.0 1 1 1 1<br>14.3 14 14 14 14<br>10.6 11 11 11 11<br>28.4 28 28 28 28<br>19.9 20 20 20 20<br>8.3 8 8 8 8<br>0.0 0 0 0 0 0<br>.120.9 121 121 121 121<br>2 Sub-<br>Area<br>Sub-<br>Area<br>0.0 0 0 0 0 0<br>2.5 26 26 26 26<br>3.7 4 4 4 4<br>5.6 6 6 6 6 6<br>0.0 0 0 0 0<br>2.5 2 2 2 2<br>0.0 0 0 0 0<br>0.0 0 0 0<br>0.0 0 0 0<br>0.0 0 0 0<br>0.0 0 0 0<br>1.0 1 1 1<br>14.3 14 14 14 14<br>10.6 11 11 11<br>14.3 14 14 14 14<br>10.6 11 11 11<br>14.3 14 14 14 14<br>10.6 11 11 11<br>14.3 14 14 14 14<br>10.6 11 11 11<br>28.4 28 28 28 28<br>19.9 20 20 20 20<br>8.3 8 8 8 8<br>0.0 0 0 0 0<br>.120.9 121 121 121 121<br>2.5 2 2 2 2<br>0.0 0 0 0 0<br>0.0 0 0 0<br>0.0 0 0 0<br>1.0 1 1 1<br>1.1 1<br>28.4 28 28 28 28<br>19.9 20 20 20 20<br>8.3 8 8 8 8<br>0.0 0 0 0 0<br>.120.9 121 121 121 121<br>2.5 3<br>1.2 2 2<br>0.0 0 0 0<br>.120.9 121 121 121 121<br>2.5 3<br>0.0 0 0<br>.120.9 121 121 121 121<br>.2 121 121 121 121 121 121 121<br>.2 121 121 121 121 121 121<br>.2 121 121 121 121 121 121 121<br>.2 121 121 121 121 121 121 121 121 121 1 | 2.5 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0<br>0.0 1.0 1 1 1 1 1<br>14.3 14 14 14 14 14<br>10.6 11 11 11 11 11<br>28.4 28 28 28 28 28<br>19.9 20 20 20 20 20 20<br>8.3 8 8 8 8 8<br>0.0 0 0 0 0 0 0<br>120.9 121 121 121 121 121<br>2 Sub-<br>Area<br>5 ment Q R S T U<br>0.0 0 0 0 0 0 0<br>2.120.9 121 121 121 121 121<br>2 Sub-<br>Area<br>5 ment Q R S T U<br>0.0 0 0 0 0 0 0<br>2.5 2 2 2 2 2<br>0.0 0 0 0 0 0<br>1.0 1 1 1 1<br>1.1 1<br>1.4.3 14 14 14 14<br>1.4.3 14 14 14 14 14<br>1.4.3 14 14 14 14<br>1.4.3 14 14 14 14 14 14 14<br>1.4.3 14 14 14 14 14 14 14<br>1.4.3 14 14 14 14 14 14 14 14 14 14 14<br>1.5.0 0 0 0 0 0 0 0 0 0 0<br>1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.5 2 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0 0<br>1.0 1 1 1 1 1 1<br>14.3 14 14 14 14 14 14<br>10.6 11 11 11 11 11<br>28.4 28 28 28 28 28 28 28<br>19.9 20 20 20 20 20 20<br>8.3 8 8 8 8 8 8<br>0.0 0 0 0 0 0 0 0<br>.120.9 121 121 121 121 121 121<br>2 Sub-<br>Catch Area<br>5 ment Q R S T U V<br>0.0 0 0 0 0 0 0 0<br>2.5 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0<br>11 1 1 1 1<br>14.3 14 14 14 14 14<br>10.6 11 11 11 11<br>14.3 14 14 14 14<br>10.6 11 11 11 11 11<br>14.3 14 14 14 14<br>10.6 11 11 11 11 11<br>14.3 14 14 14 14 14<br>10.6 11 11 11 11 11<br>28.4 28 28 28 28 28 28<br>19.9 20 20 20 20 20 20<br>0.0 0 0 0 0 0 0<br>1.20.9 121 121 121 121 121 121<br>2 c c c c c c c c c c c c c c c c c c c | 2.5 2 2 2 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0 0 0 0<br>1.0 1 1 1 1 1 1 1 1<br>14.3 14 14 14 14 14 14 14<br>10.6 11 11 11 11 11 11<br>28.4 28 28 28 28 28 28 28 28<br>19.9 20 20 20 20 20 20 20 20<br>8.3 8 8 8 8 8 8 8 8<br>0.0 0 0 0 0 0 0 0 0 0 0<br>120.9 121 121 121 121 121 121 121<br>2.5 2 2 2 2 2 2 2 2 2<br>8.3 8 8 8 8 8 8 8 8<br>0.0 0 0 0 0 0 0 0 0 0 0<br>120.9 121 121 121 121 121 121 121<br>2.5 2 2 2 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0 0 0 0<br>2.120.9 121 121 121 121 121 121 121<br>121 121 121 121 121 121 121<br>2.5 2 2 2 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0 0 0 0<br>2.5 2 2 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0 0 0<br>1.0 1 1 1 1 1 1 1<br>14.3 14 14 14 14 14 14<br>10.6 11 11 11 11 11 11<br>28.4 28 28 28 28 28 28 28 28<br>19.9 20 20 20 20 20 20 20<br>8.3 8 8 8 8 8 8 8 8<br>0.0 0 0 0 0 0 0 0 0 0<br>1.20.9 121 121 121 121 121 121 121 121<br>121 121 121 121 121 121 121 121 121 121 | 2.5 2 2 2 2 2 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0 0 0 0 0 0<br>1.0 1 1 1 1 1 1 1 1 1 1<br>14.3 14 14 14 14 14 14 14 14<br>10.6 11 11 11 11 11 11 11<br>28.4 28 28 28 28 28 28 28 28 28<br>19.9 20 20 20 20 20 20 20 20 20<br>8.3 8 8 8 8 8 8 8 8 8 8<br>0.0 0 0 0 0 0 0 0 0 0 0 0<br>120.9 121 121 121 121 121 121 121 121<br>2 Sub-<br>Catch Area<br>5 ment Q R S T U V W X<br>0.0 0 0 0 0 0 0 0 0 0 0<br>26.5 26 26 26 26 26 26 26 26 26<br>3.7 4 4 4 4 4 4 4 4 4 4<br>5.6 6 6 6 6 6 6 6 6 6<br>0.0 0 0 0 0 0 0 0 0 0 0<br>2.5 2 2 2 2 2 2 2 2 2<br>0.0 0 0 0 0 0 0 0 0 0<br>11 1 1 1 1 1 1 1<br>14.3 14 14 14 14 14 14 14<br>14.3 18 8 8 8 8 8 8 8<br>0.0 0 0 0 0 0 0 0 0 0 0<br>1.120.9 121 121 121 121 121 121 121 121<br>2 meters: kc = 61.40 m = 0.85<br>5 parameters Initial loss (mm) Cont. los<br>25.00 2.5 (25.00)<br>Calculated hydrograph, Subcatchment: 1.12 | 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                        | 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |

|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D<br>Hydro                                              | iamond<br>ograph | Creek_3 | 0h50y |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|---------|-------|
| Peak<br>Time<br>Volur<br>Time<br>Lag (<br>Lag 1                                         | discharg<br>to peak<br>ne,m³<br>to centu<br>(c.m. to<br>to peak,H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ge,m³/s<br>,h 1.7<br>roid,h<br>c.m.),h<br>ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calc.<br>1199.<br>36.0<br>0E+08<br>44.2<br>27.2<br>19.0 |                  |         |       |
| Hydro                                                                                   | ograph su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ummary<br>*****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                  |         |       |
| Site<br>01                                                                              | Descrip<br>Calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otion<br>ated hydrogr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aph,                                                    | Subcat           | chment: | 1.12  |
| Inc 1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 1 5 6 7 8 9 0 1 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 | Time<br>2.00<br>4.00<br>6.00<br>8.00<br>10.00<br>12.00<br>14.00<br>16.00<br>22.00<br>24.00<br>22.00<br>24.00<br>22.00<br>30.00<br>32.00<br>34.00<br>36.00<br>32.00<br>34.00<br>36.00<br>52.00<br>54.00<br>54.00<br>54.00<br>55.00<br>54.00<br>55.00<br>54.00<br>55.00<br>54.00<br>55.00<br>54.00<br>55.00<br>54.00<br>55.00<br>54.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00<br>55.00 | Hyd0001<br>0.00<br>15.74<br>77.19<br>156.49<br>217.51<br>261.96<br>294.71<br>318.77<br>336.32<br>371.41<br>445.89<br>573.11<br>764.86<br>967.70<br>1106.87<br>1173.79<br>1197.69<br>1199.49<br>1183.28<br>1149.57<br>1099.79<br>1037.51<br>967.37<br>893.65<br>819.53<br>747.05<br>677.41<br>611.31<br>549.19<br>491.34<br>437.95<br>389.11<br>344.80<br>304.89<br>269.17<br>237.37<br>209.20<br>184.32<br>162.42<br>143.16<br>126.27<br>111.46<br>98.48<br>87.11<br>77.15<br>68.42<br>60.76<br>54.03<br>48.12<br>42.92 |                                                         |                  |         |       |

Diamond Creek\_30h50y

Myra Creek\_30h50y RORBWin Output File Program version 6.15 (last updated 30th March 2010) Copyright Monash University and Sinclair Knight Merz Date run: 12 Oct 2011 10:38 : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Vector file Engineering\6.4 Hydrology\Myra Creek\RORB\Myra Creek.catg Storm file : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Piebald Creek\RORB\Myra Creek\_30h50y.stm Output information: Flows & all input data Data checks: \*\*\*\*\*\* Next data to be read & checked: Catchment name & reach type flag Control vector & storage data Code no. 50 7.0 Location read as Subcatchment: 1.13 Sub-area areas Impervious flag Initial storm data Rainfall burst times Pluviograph 1 Sub-area rainfalls Data check completed Data: \*\*\*\* Myra Creek Time data, in increments from initial time Myra Creek: 30 hour 50 year Design Storm Time increment (hours) = 2.00 Finish Start Rainfall times: 0 15 End of hyeto/hydrographs: 15 Duration of calculations: 100 Pluviograph data (time in incs, rainfall in mm, in increment following time shown) 1:Temporal pattern (% of depth Time 1 1.9 0 25.3 1 2 3 5.1 4 1.1 5 3.6 1.5 2.3 2.9 6 7 8 9.3 9 10 7.5

Myra Creek\_30h50y

| 11<br>12<br>13<br>14 | $     \begin{array}{r}       16.1 \\       12.0 \\       6.4 \\       0.8 \\     \end{array} $ |
|----------------------|------------------------------------------------------------------------------------------------|
| 14                   | 0.8                                                                                            |

Total 100.0

#### DESIGN run control vector

| Step | Code | Description                                         |      |
|------|------|-----------------------------------------------------|------|
| 1    | 1    | Add sub-area 'A' inflow & route thru normal storage | 1    |
| 2    | 5    | Route hydrograph thru normal storage 2              |      |
| 3    | 2    | Add sub-area 'B' inflow & route thru normal storage | 3    |
| 4    | 5    | Route hydrograph thru normal storage 4              |      |
| 5    | 2    | Add sub-area 'C' inflow & route thru normal storage | 5    |
| 6    | 5    | Route hydrograph thru normal storage 6              |      |
| 7    | 3    | Store hydrograph from step 6; reset hydrograph to   | zero |
| 8    | 1    | Add sub-area 'D' inflow & route thru normal storage | 7    |
| 9    | 5    | Route hydrograph thru normal storage 8              |      |
| 10   | 4    | Add h-graph ex step 7 to h-graph ex step 9          |      |
| 11   | 2    | Add sub-area 'E' inflow & route thru normal storage | 9    |
| 12   | 5    | Route hydrograph thru normal storage 10             |      |
| 13   | 2    | Add sub-area 'F' inflow & route thru normal storage | 11   |
| 14   | 5    | Route hydrograph thru normal storage 12             |      |
| 15   | 2    | Add sub-area 'G' inflow & route thru normal storage | 13   |
| 16   | 5    | Route hydrograph thru normal storage 14             |      |
| 17   | 2    | Add sub-area 'H' inflow & route thru normal storage | 15   |
| 18   | 5    | Route hydrograph thru normal storage 16             |      |
| 19   | 2    | Add sub-area 'I' inflow & route thru normal storage | 17   |
| 20   | 3    | Store hydrograph from step 19; reset hydrograph to  | zero |
| 21   | 1    | Add sub-area 'J' inflow & route thru normal storage | 18   |
| 22   | 5    | Route hydrograph thru normal storage 19             |      |
| 23   | 2    | Add sub-area 'K' inflow & route thru normal storage | 20   |
| 24   | 5    | Route hydrograph thru normal storage 21             |      |
| 25   | 2    | Add sub-area 'L' inflow & route thru normal storage | 22   |
| 26   | 5    | Route hydrograph thru normal storage 23             |      |
| 27   | 2    | Add sub-area 'M' inflow & route thru normal storage | 24   |
| 28   | 5    | Route hydrograph thru normal storage 25             |      |
| 29   | 2    | Add sub-area 'N' inflow & route thru normal storage | 26   |
| 30   | 4    | Add h-graph ex step 20 to h-graph ex step 29        |      |
| 31   | 5    | Route hydrograph thru normal storage 27             |      |
| 32   | 3    | Store hydrograph from step 31: reset hydrograph to  | zero |
| 33   | 1    | Add sub-area 'O' inflow & route thru normal storage | 28   |
| 34   | 5    | Route hydrograph thru normal storage 29             |      |
| 35   | 2    | Add sub-area 'P' inflow & route thru normal storage | 30   |
| 36   | 5    | Route hydrograph thru normal storage 31             |      |
| 37   | 4    | Add h-graph ex step 32 to h-graph ex step 36        |      |
| 38   | 3    | Store hydrograph from step 37: reset hydrograph to  | zero |
| 39   | 1    | Add sub-area 'O' inflow & route thru normal storage | 32   |
| 40   | 5    | Route hydrograph thru normal storage 33             |      |
| 41   | 4    | Add h-graph existen 38 to h-graph existen 40        |      |
| 42   | 2    | Add sub-area 'R' inflow & route thru normal storage | 34   |
| 43   | 5    | Route hydrograph thru normal storage 35             | •    |
| 44   | 2    | Add sub-area 'S' inflow & route thru normal storage | 36   |
| 45   | 5    | Route hydrograph thru normal storage 37             | 50   |
| 46   | 2    | Add sub-area 'T' inflow & route thru normal storage | 38   |
| 47   | 5    | Route hydrograph thru normal storage 39             | 50   |
| 48   | 2    | Add sub-area 'U' inflow & route thru normal storage | 40   |
| 49   | 5    | Route hydrograph thru normal storage 41             | .0   |
| 50   | žΟ   | Print hydrograph Subcatchment: 1 13                 |      |
| 51   | 2    | Add sub-area 'V' inflow & route thru normal storage | 42   |
| 52   | ō    | **************************************              | . 2  |
| 52   | U    |                                                     |      |

#### Myra Creek\_30h50y

Sub-area data

| Sub-<br>area | Area<br>km²          | Dist.<br>km*         |
|--------------|----------------------|----------------------|
| A            | 1.50E+01             | 7.14E+01             |
| Б            | 1.51E+01<br>1.58F+01 | 6.00E+01             |
| D            | 1.50E+01             | 6.59E+01             |
| Е            | 1.60E+01             | 6.17E+01             |
| F            | 1.61E+01             | 5.83E+01             |
| G            | 1.51E+01<br>1.51E+01 | 5.43E+01<br>5.08E+01 |
| I            | 1.55E+01             | 4.25E+01             |
| J            | 1.51E+01             | 4.79E+01             |
| К            | 2.01E+01             | 4.29E+01             |
| L            | 1.52E+01             | 4.17E+01             |
| M            | 1.50E+01<br>1.58E+01 | 4.05E+01<br>3 80E+01 |
| 0            | 1.51E+01             | 4.29E+01             |
| P            | 1.96E+01             | 3.75E+01             |
| Q            | 1.76E+01             | 4.50E+01             |
| R            | 1.84E+01             | 3.33E+01             |
| 5<br>Т       | 1.50E+01<br>1.52E+01 | 2.07E+01<br>1 89F+01 |
| Ů            | 1.50E+01             | 1.03E+01             |
| V            | 1.18E+01             | 3.00E+00             |

#### Total 3.477E+02

For whole catchment ; Av. Dist., km\* = 44.13 For interstation area 1; Av. Dist., km\* = 44.13; ISA Factor = 1.000

\* or other function of reach properties related to travel time

Normal storage data

| Storage | Length | Rel. delay | туре             | slope   |
|---------|--------|------------|------------------|---------|
| no.     | km*    | time       | _                | percent |
| 1       | 3.3    | 0.075      | Natural          |         |
| 2       | 1.3    | 0.030      | Natural          |         |
| 3       | 1.3    | 0.030      | Natural          |         |
| 4       | 1.5    | 0.035      | Natural          |         |
| 5       | 1.5    | 0.035      | Natural          |         |
| 6       | 0.7    | 0.015      | Natural          |         |
| 7       | 3.5    | 0.079      | Natural          |         |
| 8       | 0.7    | 0.015      | Natural          |         |
| 9       | 0.7    | 0.015      | Natural          |         |
| 10      | 2.7    | 0.061      | Natural          |         |
| 11      | 2.7    | 0.061      | Natural          |         |
| 12      | 1.3    | 0.030      | Natural          |         |
| 13      | 1.3    | 0.030      | Natural          |         |
| 14      | 2.2    | 0.050      | Natural          |         |
| 15      | 2.2    | 0.050      | Natural          |         |
| 16      | 6.1    | 0.138      | Natural          |         |
| 17      | 6.1    | 0.138      | Natural          |         |
| 18      | 4.1    | 0.093      | Natural          |         |
| 19      | 0.8    | 0.019      | Natural          |         |
| 20      | 0.8    | 0.019      | Natural          |         |
| 21      | 0.4    | 0.009      | Natural          |         |
| 22      | 0.4    | 0.009      | Natural          |         |
| 23      | 0.9    | 0.020      | Natural          |         |
| 24      | 0.9    | 0.020      | Natural          |         |
| 25      | 1.6    | 0.036      | Natural          |         |
| 26      | 1.6    | 0.036      | Natural          |         |
| 27      | 3.0    | 0.069      | Natural          |         |
| 28      | 4.3    | 0.097      | Natural          |         |
|         |        |            | <b>D a a a b</b> |         |

|    |     |       | Myra Creek_30h50y |
|----|-----|-------|-------------------|
| 29 | 1.1 | 0.025 | Natural           |
| 30 | 1.1 | 0.025 | Natural           |
| 31 | 3.0 | 0.069 | Natural           |
| 32 | 8.6 | 0.195 | Natural           |
| 33 | 3.0 | 0.069 | Natural           |
| 34 | 3.0 | 0.069 | Natural           |
| 35 | 3.6 | 0.081 | Natural           |
| 36 | 3.6 | 0.081 | Natural           |
| 37 | 4.3 | 0.097 | Natural           |
| 38 | 4.3 | 0.097 | Natural           |
| 39 | 4.3 | 0.097 | Natural           |
| 40 | 4.3 | 0.097 | Natural           |
| 41 | 3.0 | 0.068 | Natural           |
| 42 | 3.0 | 0.068 | Natural           |

\* or other function of reach properties related to travel time

Myra Creek DESIGN Run Myra Creek: 30 hour 50 year Design Storm Time increment = 2.00 hours

Constant loss model selected

| R<br>T  | ain <sup>.</sup><br>ime | fall,         | mm, | in | time<br>Su | e ind<br>ub- | :. fo | 0110 | wing | time        | e sho    | own |     |     |     |     |     |     |     |
|---------|-------------------------|---------------|-----|----|------------|--------------|-------|------|------|-------------|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| I<br>P  | ncs                     | Catcl<br>ment | h   |    | Ai<br>A    | rea<br>B     | C     | D    | E    | F           | G        | н   | I   | J   | К   | L   | М   | N   | 0   |
| 4       | 0                       | 4.1           |     |    | 4          | 4            | 4     | 4    | 4    | 4           | 4        | 4   | 4   | 4   | 4   | 4   | 4   | 4   | 4   |
| 4<br>55 | 1                       | 54.5          |     |    | 55         | 55           | 55    | 55   | 55   | 55          | 55       | 55  | 55  | 55  | 55  | 55  | 55  | 55  | 55  |
| 0       | 2                       | 9.0           |     |    | 9          | 9            | 9     | 9    | 9    | 9           | 9        | 9   | 9   | 9   | 9   | 9   | 9   | 9   | 9   |
| 9<br>11 | 3                       | 11.0          |     |    | 11         | 11           | 11    | 11   | 11   | 11          | 11       | 11  | 11  | 11  | 11  | 11  | 11  | 11  | 11  |
| тт<br>2 | 4                       | 2.4           |     |    | 2          | 2            | 2     | 2    | 2    | 2           | 2        | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   |
| ۷<br>۵  | 5                       | 7.8           |     |    | 8          | 8            | 8     | 8    | 8    | 8           | 8        | 8   | 8   | 8   | 8   | 8   | 8   | 8   | 8   |
| 2       | 6                       | 3.2           |     |    | 3          | 3            | 3     | 3    | 3    | 3           | 3        | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |
| 5       | 7                       | 5.0           |     |    | 5          | 5            | 5     | 5    | 5    | 5           | 5        | 5   | 5   | 5   | 5   | 5   | 5   | 5   | 5   |
| 5       | 8                       | 6.2           |     |    | 6          | 6            | 6     | 6    | 6    | 6           | 6        | 6   | 6   | 6   | 6   | 6   | 6   | 6   | 6   |
| 20      | 9                       | 20.0          |     |    | 20         | 20           | 20    | 20   | 20   | 20          | 20       | 20  | 20  | 20  | 20  | 20  | 20  | 20  | 20  |
| 16      | 10                      | 16.2          |     |    | 16         | 16           | 16    | 16   | 16   | 16          | 16       | 16  | 16  | 16  | 16  | 16  | 16  | 16  | 16  |
| 25      | 11                      | 34.7          |     |    | 35         | 35           | 35    | 35   | 35   | 35          | 35       | 35  | 35  | 35  | 35  | 35  | 35  | 35  | 35  |
| 22      | 12                      | 25.9          |     |    | 26         | 26           | 26    | 26   | 26   | 26          | 26       | 26  | 26  | 26  | 26  | 26  | 26  | 26  | 26  |
| 1/      | 13                      | 13.8          |     |    | 14         | 14           | 14    | 14   | 14   | 14          | 14       | 14  | 14  | 14  | 14  | 14  | 14  | 14  | 14  |
| 2       | 14                      | 1.7           |     |    | 2          | 2            | 2     | 2    | 2    | 2           | 2        | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   |
| Т       | ot.                     | 215.5         |     |    | 215        | 215          | 215   | 215  | 215  | 215<br>Page | 215<br>4 | 215 | 215 | 215 | 215 | 215 | 215 | 215 | 215 |

|                                                                         |                                                                                                                                             |       |                                                                                |                                                                                |                                                                                | Му                                                                             | ra C                                                                           | reek                                                                       | _30h  | 150y |      |         |     |     |     |     |     |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|------|------|---------|-----|-----|-----|-----|-----|
| 215<br>Pluv <sup>.</sup><br>1                                           | i. ref.                                                                                                                                     | no.   | 1                                                                              | 1                                                                              | 1                                                                              | 1                                                                              | 1                                                                              | 1                                                                          | 1     | 1    | 1    | 1       | 1   | 1   | 1   | 1   | 1   |
| Time                                                                    |                                                                                                                                             |       | Sı                                                                             | ıb-                                                                            |                                                                                |                                                                                |                                                                                |                                                                            |       |      |      |         |     |     |     |     |     |
| Incs                                                                    | Catch<br>ment                                                                                                                               |       | Ai<br>Q                                                                        | rea<br>R                                                                       | S                                                                              | т                                                                              | U                                                                              | v                                                                          |       |      |      |         |     |     |     |     |     |
| 0<br>1<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | $\begin{array}{c} 4.1 \\ 54.5 \\ 9.0 \\ 11.0 \\ 2.4 \\ 7.8 \\ 3.2 \\ 5.0 \\ 6.2 \\ 20.0 \\ 16.2 \\ 34.7 \\ 25.9 \\ 13.8 \\ 1.7 \end{array}$ |       | 4<br>55<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>55<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>55<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>55<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>55<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>55<br>9<br>11<br>2<br>8<br>35<br>6<br>20<br>16<br>35<br>26<br>14<br>2 |       |      |      |         |     |     |     |     |     |
| Tot.2<br>Pluv                                                           | 215.5<br>i. ref.                                                                                                                            | no.   | 215<br>1                                                                       | 215<br>1                                                                       | 215<br>1                                                                       | 215<br>1                                                                       | 215<br>1                                                                       | 215<br>1                                                                   |       |      |      |         |     |     |     |     |     |
| Raini<br>Time<br>Tncs                                                   | fall-ex<br>Catch                                                                                                                            | cess, | mm,<br>Sl<br>Ai                                                                | in<br>ub-<br>rea                                                               | time                                                                           | inc.                                                                           | . fo <sup>-</sup>                                                              | llow <sup>-</sup>                                                          | ing 1 | time | shov | vn<br>٦ | K   | 1   | м   | N   | 0   |
| P                                                                       | merre                                                                                                                                       |       | A                                                                              | Б                                                                              | C                                                                              | D                                                                              | Ľ                                                                              | Г                                                                          | G     | п    | T    | J       | ĸ   | L   | Ivi | IN  | 0   |
| 0                                                                       | 0.0                                                                                                                                         |       | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                          | 0     | 0    | 0    | 0       | 0   | 0   | 0   | 0   | 0   |
| 1                                                                       | 28.6                                                                                                                                        |       | 29                                                                             | 29                                                                             | 29                                                                             | 29                                                                             | 29                                                                             | 29                                                                         | 29    | 29   | 29   | 29      | 29  | 29  | 29  | 29  | 29  |
| 29                                                                      | 4.0                                                                                                                                         |       | 4                                                                              | 4                                                                              | 4                                                                              | 4                                                                              | 4                                                                              | 4                                                                          | 4     | 4    | 4    | 4       | 4   | 4   | 4   | 4   | 4   |
| 4<br>3                                                                  | 6.0                                                                                                                                         |       | 6                                                                              | 6                                                                              | 6                                                                              | 6                                                                              | 6                                                                              | 6                                                                          | 6     | 6    | 6    | 6       | 6   | 6   | 6   | 6   | 6   |
| 4                                                                       | 0.0                                                                                                                                         |       | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                          | 0     | 0    | 0    | 0       | 0   | 0   | 0   | 0   | 0   |
| 5                                                                       | 2.8                                                                                                                                         |       | 3                                                                              | 3                                                                              | 3                                                                              | 3                                                                              | 3                                                                              | 3                                                                          | 3     | 3    | 3    | 3       | 3   | 3   | 3   | 3   | 3   |
| 5                                                                       | 0.0                                                                                                                                         |       | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                          | 0     | 0    | 0    | 0       | 0   | 0   | 0   | 0   | 0   |
| 7                                                                       | 0.0                                                                                                                                         |       | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                          | 0     | 0    | 0    | 0       | 0   | 0   | 0   | 0   | 0   |
| 0 8                                                                     | 1.2                                                                                                                                         |       | 1                                                                              | 1                                                                              | 1                                                                              | 1                                                                              | 1                                                                              | 1                                                                          | 1     | 1    | 1    | 1       | 1   | 1   | 1   | 1   | 1   |
| 9                                                                       | 15.0                                                                                                                                        |       | 15                                                                             | 15                                                                             | 15                                                                             | 15                                                                             | 15                                                                             | 15                                                                         | 15    | 15   | 15   | 15      | 15  | 15  | 15  | 15  | 15  |
| 15<br>10                                                                | 11.2                                                                                                                                        |       | 11                                                                             | 11                                                                             | 11                                                                             | 11                                                                             | 11                                                                             | 11                                                                         | 11    | 11   | 11   | 11      | 11  | 11  | 11  | 11  | 11  |
| 11<br>11                                                                | 29.7                                                                                                                                        |       | 30                                                                             | 30                                                                             | 30                                                                             | 30                                                                             | 30                                                                             | 30                                                                         | 30    | 30   | 30   | 30      | 30  | 30  | 30  | 30  | 30  |
| 30<br>12                                                                | 20.9                                                                                                                                        |       | 21                                                                             | 21                                                                             | 21                                                                             | 21                                                                             | 21                                                                             | 21                                                                         | 21    | 21   | 21   | 21      | 21  | 21  | 21  | 21  | 21  |
| 21<br>13                                                                | 8.8                                                                                                                                         |       | 9                                                                              | 9                                                                              | 9                                                                              | 9                                                                              | 9                                                                              | 9                                                                          | 9     | 9    | 9    | 9       | 9   | 9   | 9   | 9   | 9   |
| 9<br>14<br>0                                                            | 0.0                                                                                                                                         |       | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                              | 0                                                                          | 0     | 0    | 0    | 0       | 0   | 0   | 0   | 0   | 0   |
| Tot.                                                                    | 128.2                                                                                                                                       |       | 128                                                                            | 128                                                                            | 128                                                                            | 128                                                                            | 128                                                                            | 128                                                                        | 128   | 128  | 128  | 128     | 128 | 128 | 128 | 128 | 128 |

Page 5

|                                                                  |                                                                                                   |                                                                               |                                                              | Му                                                            | ra C                                                          | reek_                                                         | _30h50y  |  |  |  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------|--|--|--|
| 128                                                              |                                                                                                   |                                                                               |                                                              |                                                               |                                                               |                                                               |          |  |  |  |
| Time                                                             | Catch                                                                                             | Sub-                                                                          |                                                              |                                                               |                                                               |                                                               |          |  |  |  |
| Incs                                                             | ment                                                                                              | Q F                                                                           | s s                                                          | т                                                             | U                                                             | V                                                             |          |  |  |  |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 0.0<br>28.6<br>4.0<br>6.0<br>2.8<br>0.0<br>1.2<br>15.0<br>11.2<br>29.7<br>20.9                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$        | 0<br>29<br>4<br>6<br>0<br>3<br>0<br>1<br>15<br>11<br>30<br>21 | 0<br>29<br>4<br>6<br>0<br>3<br>0<br>1<br>15<br>11<br>30<br>21 | 0<br>29<br>4<br>6<br>0<br>3<br>0<br>1<br>15<br>11<br>30<br>21 |          |  |  |  |
| 13                                                               | 8.8                                                                                               | 9 9                                                                           | 9                                                            | -9                                                            | 9                                                             | - 9                                                           |          |  |  |  |
| 14                                                               | 0.0                                                                                               | 0 0                                                                           | 0                                                            | 0                                                             | 0                                                             | 0                                                             |          |  |  |  |
| Tot.1                                                            | 28.2                                                                                              | 128 128                                                                       | 128                                                          | 128                                                           | 128                                                           | 128                                                           |          |  |  |  |
| Routi<br>*****<br>Myra<br>DESIG<br>Param<br>LOSS                 | Routing results:<br>************************************                                          |                                                                               |                                                              |                                                               |                                                               |                                                               |          |  |  |  |
| *** C                                                            | alculated h                                                                                       | ydrograp                                                                      | oh,                                                          | Subo                                                          | atch                                                          | nment                                                         | : 1.13   |  |  |  |
| Peak<br>Time<br>Volum<br>Time<br>Lag (<br>Lag t                  | discharge,m<br>to peak,h<br>e,m³<br>to centroid<br>c.m. to c.m<br>o peak,h                        | ³/s<br>4.2<br>,h<br>.),h                                                      | Hyc<br>Calo<br>443.0<br>38.0<br>8E+0<br>36.1<br>19.3<br>21.1 | drogr<br>c.<br>)<br>7<br>7<br>8<br>1                          | raph                                                          |                                                               |          |  |  |  |
| Hydro<br>*****                                                   | graph summa<br>*****                                                                              | ry<br>**                                                                      |                                                              |                                                               |                                                               |                                                               |          |  |  |  |
| Site<br>01                                                       | Descriptio<br>Calculated                                                                          | n<br>hydrogr                                                                  | aph,                                                         | Sı                                                            | ubcat                                                         | chme                                                          | nt: 1.13 |  |  |  |
| Inc<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                 | Time Hy<br>2.00<br>4.00<br>6.00<br>8.00 2<br>10.00 3<br>12.00 4<br>14.00 5<br>16.00 8<br>18.00 12 | d0001<br>0.000<br>5.631<br>1.129<br>3.269<br>1.527<br>7.880<br>6.361<br>2.007 |                                                              |                                                               |                                                               |                                                               |          |  |  |  |

| 111111111111222222222222233333333333344444444      | $\begin{array}{c} 20.00\\ 22.00\\ 24.00\\ 26.00\\ 28.00\\ 30.00\\ 32.00\\ 34.00\\ 36.00\\ 34.00\\ 40.00\\ 42.00\\ 44.00\\ 46.00\\ 45.00\\ 50.00\\ 52.00\\ 54.00\\ 56.00\\ 58.00\\ 60.00\\ 62.00\\ 64.00\\ 66.00\\ 68.00\\ 70.00\\ 72.00\\ 74.00\\ 76.00\\ 72.00\\ 74.00\\ 76.00\\ 80.00\\ 80.00\\ 80.00\\ 80.00\\ 80.00\\ 80.00\\ 80.00\\ 90.00\\ 92.00\\ 94.00\\ 90.00\\ 92.00\\ 94.00\\ 90.00\\ 92.00\\ 94.00\\ 90.00\\ 102.00\\ 104.00\\ 102.00\\ 104.00\\ 102.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 116.00\\ 112.00\\ 114.00\\ 114.00\\ 116.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ 114.00\\ $ | $\begin{array}{c} 152.687\\ 175.666\\ 192.477\\ 209.314\\ 235.925\\ 265.909\\ 298.768\\ 345.546\\ 400.421\\ 439.517\\ 442.952\\ 412.161\\ 362.424\\ 308.547\\ 258.116\\ 213.257\\ 174.090\\ 140.457\\ 112.186\\ 88.956\\ 70.238\\ 55.376\\ 43.691\\ 34.554\\ 27.591\\ 6.241\\ 5.156\\ 4.281\\ 3.571\\ 2.992\\ 2.518\\ 2.128\\ 1.806\\ 1.538\\ 1.315\\ 1.129\\ 0.972\\ 0.848\\ 1.538\\ 1.315\\ 1.129\\ 0.972\\ 0.848\\ 0.633\\ 0.551\\ 0.423\\ 0.371\\ 0.327\\ 0.289\\ 0.256\\ 0.227\\ 0.202\\ 0.180\\ 0.161\\ 0.144\\ 0.129\\ 0.116\\ 0.004\\ \end{array}$ |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 66<br>67<br>68<br>69<br>70<br>71<br>72<br>73<br>74 | $132.00 \\ 134.00 \\ 136.00 \\ 138.00 \\ 140.00 \\ 142.00 \\ 144.00 \\ 146.00 \\ 148.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.161 \\ 0.144 \\ 0.129 \\ 0.116 \\ 0.094 \\ 0.085 \\ 0.076 \\ 0.069 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 75<br>76<br>77                                     | 150.00<br>152.00<br>154.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.063<br>0.057<br>0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Myra C | reek_ | _30h50y |
|--------|-------|---------|
|--------|-------|---------|

Myra Creek\_30h50y

Nibereena Creek\_30h50y RORBWin Output File Program version 6.15 (last updated 30th March 2010) Copyright Monash University and Sinclair Knight Merz Date run: 12 Oct 2011 12:14 Vector file : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Nibbereena Creek\RORB\Nibereena Creek.catg Storm file : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Piebald Creek\RORB\Nibereena Creek\_30h50y.stm Output information: Flows & all input data Data checks: \*\*\*\*\*\* Next data to be read & checked: Catchment name & reach type flag Control vector & storage data Code no. 49 7.0 Location read as Subcatchment: 1.14 Sub-area areas Impervious flag Initial storm data Rainfall burst times Pluviograph 1 Sub-area rainfalls Data check completed Data: \*\*\*\* Nibereena Creek Time data, in increments from initial time Nibereena Creek: 30 hour 50 year Design Storm Time increment (hours)= 2.00 Finish Start Rainfall times: 0 15 End of hyeto/hydrographs: 15 Duration of calculations: 100 Pluviograph data (time in incs, rainfall in mm, in increment following time shown) 1:Temporal pattern (% of depth Time 1 1.9 0 25.3 1 2 3 5.1 4 1.1 5 3.6 1.5 2.3 2.9 6 7 8 9.3 9 10 7.5

Nibereena Creek\_30h50y

Total 100.0

#### DESIGN run control vector

| Step | Code | Description                                         |      |
|------|------|-----------------------------------------------------|------|
| 1    | 1    | Add sub-area 'A' inflow & route thru normal storage | 1    |
| 2    | 5    | Route hydrograph thru normal storage 2              |      |
| 3    | 2    | Add sub-area 'B' inflow & route thru normal storage | 3    |
| 4    | 5    | Route hydrograph thru normal storage 4              | _    |
| 5    | 2    | Add sub-area 'C' inflow & route thru normal storage | 5    |
| 6    | 5    | Route hydrograph thru normal storage 6              | _    |
| /    | 2    | Add sub-area 'D' inflow & route thru normal storage | 1    |
| 8    | 5    | Route hydrograph thru normal storage 8              | 0    |
| 10   | Ž    | Add sub-area 'E' inflow & route thru normal storage | 9    |
| 10   | 5    | Route hydrograph thru normal storage 10             |      |
|      | 5    | Store hydrograph from step 10; reset hydrograph to  | zero |
| 12   | Ť    | Add sub-area 'F' inflow & route thru normal storage | ΤΤ   |
| 13   | 2    | Route nydrograph thru normal storage 12             | 10   |
| 14   | 2    | Add sub-area 'G' inflow & route thru normal storage | 13   |
| 10   | 2    | Route nyarograph thru normal storage 14             | 1 -  |
| 10   | 2    | Add sub-area 'H' inflow & route thru normal storage | 12   |
| 1/   | 2    | Route nydrograph thru normal storage 16             | 17   |
| 18   | Ž    | Add sub-area 'I' inflow & route thru normal storage | 17   |
| 19   | 5    | Route hydrograph thru normal storage 18             |      |
| 20   | 4    | Add h-graph ex step 11 to h-graph ex step 19        |      |
| 21   | 3    | Store hydrograph from step 20; reset hydrograph to  | zero |
| 22   | 1    | Add sub-area 'J' inflow & route thru normal storage | 19   |
| 23   | 5    | Route hydrograph thru normal storage 20             |      |
| 24   | 4    | Add h-graph ex step 21 to h-graph ex step 23        |      |
| 25   | 2    | Add sub-area 'K' inflow & route thru normal storage | 21   |
| 26   | 5    | Route hydrograph thru normal storage 22             |      |
| 27   | 2    | Add sub-area 'L' inflow & route thru normal storage | 23   |
| 28   | 5    | Route hydrograph thru normal storage 24             |      |
| 29   | 2    | Add sub-area 'M' inflow & route thru normal storage | 25   |
| 30   | 5    | Route hydrograph thru normal storage 26             |      |
| 31   | 2    | Add sub-area 'N' inflow & route thru normal storage | 27   |
| 32   | 5    | Route hydrograph thru normal storage 28             |      |
| 33   | 3    | Store hydrograph from step 32; reset hydrograph to  | zero |
| 34   | 1    | Add sub-area 'O' inflow & route thru normal storage | 29   |
| 35   | 5    | Route hydrograph thru normal storage 30             |      |
| 36   | 2    | Add sub-area 'P' inflow & route thru normal storage | 31   |
| 37   | 5    | Route hydrograph thru normal storage 32             |      |
| 38   | 4    | Add h-graph ex step 33 to h-graph ex step 37        |      |
| 39   | 2    | Add sub-area 'Q' inflow & route thru normal storage | 33   |
| 40   | 5    | Route hydrograph thru normal storage 34             |      |
| 41   | 2    | Add sub-area 'R' inflow & route thru normal storage | 35   |
| 42   | 5    | Route hydrograph thru normal storage 36             |      |
| 43   | 2    | Add sub-area 'S' inflow & route thru normal storage | 37   |
| 44   | 5    | Route hydrograph thru normal storage 38             |      |
| 45   | 2    | Add sub-area 'T' inflow & route thru normal storage | 39   |
| 46   | 5    | Route hydrograph thru normal storage 40             |      |
| 47   | 2    | Add sub-area 'U' inflow & route thru normal storage | 41   |
| 48   | 5    | Route hydrograph thru normal storage 42             |      |
| 49   | 7.0  | Print hydrograph, Subcatchment: 1.14                |      |
| 50   | 2    | Add sub-area 'V' inflow & route thru normal storage | 43   |
| 51   | 0    | **************************************              |      |
|      |      |                                                     |      |

Sub-area data

#### Nibereena Creek\_30h50y

| Sub-      | Area                 | Dist.                      |
|-----------|----------------------|----------------------------|
| area      | km²                  | km*                        |
| Α         | 7.05E+00             | 3.12E+01                   |
| В         | 1.17E+01             | 2.79E+01                   |
| Ē         | 7.03E+00             | 2.61E+01                   |
| D         | 7.18F+00             | 2.42F+01                   |
| F         | $7 45 \pm 00$        | 2 24F+01                   |
| F         | 700F+00              | 3 11F+01                   |
| Ġ         | 7.23E+00             | 2 44F+01                   |
| н         | 7.16E+00             | 2.35E+01                   |
| т         | 7.03E+00             | 2.33E+01<br>2.23E+01       |
| 1         | 7 90F±00             | 2.25C+01<br>2.46F $\pm$ 01 |
| N N       |                      | 2.402+01<br>2.08=+01       |
|           | $9.30 \pm 00$        | 1 03 E 1 01                |
|           | 9.10E+00<br>9.10E+00 | $1 \ 83 \ -1 \ 01$         |
| IVI<br>NI |                      | 1.69 - 01                  |
| N         | 7.03E+00             | 1.00E+01                   |
| 0         | 7.01E+00             | 1.95E+01                   |
| P         | 7.72E+00             | 1.05E+01                   |
| Q         | 7.04E+00             | 1.30E+01                   |
| ĸ         | 7.02E+00             | 1.30E+UI                   |
| 5         | 7.33E+00             | 1.10E+01                   |
| 1         | 9.75E+00             | 8.19E+00                   |
| U         | 7.18E+00             | 5.36E+00                   |
| V         | /./1E+00             | 1./4E+00                   |

Total 1.728E+02

For whole catchment ; Av. Dist., km\* = 19.26 For interstation area 1; Av. Dist., km\* = 19.26; ISA Factor = 1.000

\* or other function of reach properties related to travel time

Normal storage data

| Storage | Length | Rel. delay | туре    | slope   |
|---------|--------|------------|---------|---------|
| no.     | km*    | time       |         | percent |
| 1       | 2.3    | 0.122      | Natural |         |
| 2       | 0.9    | 0.047      | Natural |         |
| 3       | 0.9    | 0.047      | Natural |         |
| 4       | 0.9    | 0.046      | Natural |         |
| 5       | 0.9    | 0.046      | Natural |         |
| 6       | 1.0    | 0.053      | Natural |         |
| 7       | 1.0    | 0.053      | Natural |         |
| 8       | 0.8    | 0.040      | Natural |         |
| 9       | 0.8    | 0.040      | Natural |         |
| 10      | 0.8    | 0.043      | Natural |         |
| 11      | 6.2    | 0.323      | Natural |         |
| 12      | 0.4    | 0.022      | Natural |         |
| 13      | 0.4    | 0.022      | Natural |         |
| 14      | 0.6    | 0.029      | Natural |         |
| 15      | 0.6    | 0.029      | Natural |         |
| 16      | 0.6    | 0.033      | Natural |         |
| 17      | 0.6    | 0.033      | Natural |         |
| 18      | 0.8    | 0.043      | Natural |         |
| 19      | 3.0    | 0.154      | Natural |         |
| 20      | 0.8    | 0.043      | Natural |         |
| 21      | 0.8    | 0.043      | Natural |         |
| 22      | 0.7    | 0.037      | Natural |         |
| 23      | 0.7    | 0.037      | Natural |         |
| 24      | 0.3    | 0.014      | Natural |         |
| 25      | 0.3    | 0.014      | Natural |         |
| 26      | 1.2    | 0.062      | Natural |         |
| 27      | 1.2    | 0.062      | Natural |         |
| 28      | 0.6    | 0.033      | Natural |         |
| 29      | 2.4    | 0.122      | Natural |         |
|         |        |            | Dago 3  |         |

Page 3

|    |     |       | Nibereena Creek_30h50y |
|----|-----|-------|------------------------|
| 30 | 0.6 | 0.034 | Natural                |
| 31 | 0.6 | 0.034 | Natural                |
| 32 | 0.6 | 0.033 | Natural                |
| 33 | 0.6 | 0.033 | Natural                |
| 34 | 0.8 | 0.040 | Natural                |
| 35 | 0.8 | 0.040 | Natural                |
| 36 | 1.8 | 0.095 | Natural                |
| 37 | 1.8 | 0.095 | Natural                |
| 38 | 1.0 | 0.050 | Natural                |
| 39 | 1.0 | 0.050 | Natural                |
| 40 | 1.9 | 0.097 | Natural                |
| 41 | 1.9 | 0.097 | Natural                |
| 42 | 1.7 | 0.090 | Natural                |
| 43 | 1.7 | 0.090 | Natural                |

\* or other function of reach properties related to travel time

Nibereena Creek DESIGN Run Nibereena Creek: 30 hour 50 year Design Storm Time increment = 2.00 hours

Constant loss model selected

| R<br>T   | ain <sup>.</sup><br>ime | fall,         | mm, | in | time<br>Su | e ind<br>ub- | :. fo | 0110 | wing | time        | e sho    | own |     |     |     |     |     |     |     |
|----------|-------------------------|---------------|-----|----|------------|--------------|-------|------|------|-------------|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| I<br>P   | ncs                     | Catcl<br>ment | h   |    | A<br>A     | rea<br>B     | с     | D    | E    | F           | G        | н   | I   | J   | К   | L   | М   | N   | 0   |
| 4        | 0                       | 4.2           |     |    | 4          | 4            | 4     | 4    | 4    | 4           | 4        | 4   | 4   | 4   | 4   | 4   | 4   | 4   | 4   |
| 4<br>5 C | 1                       | 55.5          |     |    | 56         | 56           | 56    | 56   | 56   | 56          | 56       | 56  | 56  | 56  | 56  | 56  | 56  | 56  | 56  |
| 00       | 2                       | 9.2           |     |    | 9          | 9            | 9     | 9    | 9    | 9           | 9        | 9   | 9   | 9   | 9   | 9   | 9   | 9   | 9   |
| 9<br>11  | 3                       | 11.2          |     |    | 11         | 11           | 11    | 11   | 11   | 11          | 11       | 11  | 11  | 11  | 11  | 11  | 11  | 11  | 11  |
| тт<br>2  | 4                       | 2.4           |     |    | 2          | 2            | 2     | 2    | 2    | 2           | 2        | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   |
| ۷<br>۵   | 5                       | 7.9           |     |    | 8          | 8            | 8     | 8    | 8    | 8           | 8        | 8   | 8   | 8   | 8   | 8   | 8   | 8   | 8   |
| o<br>2   | 6                       | 3.3           |     |    | 3          | 3            | 3     | 3    | 3    | 3           | 3        | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |
| 5        | 7                       | 5.0           |     |    | 5          | 5            | 5     | 5    | 5    | 5           | 5        | 5   | 5   | 5   | 5   | 5   | 5   | 5   | 5   |
| 5        | 8                       | 6.4           |     |    | 6          | 6            | 6     | 6    | 6    | 6           | 6        | 6   | 6   | 6   | 6   | 6   | 6   | 6   | 6   |
| 20       | 9                       | 20.4          |     |    | 20         | 20           | 20    | 20   | 20   | 20          | 20       | 20  | 20  | 20  | 20  | 20  | 20  | 20  | 20  |
| 16       | 10                      | 16.5          |     |    | 16         | 16           | 16    | 16   | 16   | 16          | 16       | 16  | 16  | 16  | 16  | 16  | 16  | 16  | 16  |
| 70<br>T0 | 11                      | 35.3          |     |    | 35         | 35           | 35    | 35   | 35   | 35          | 35       | 35  | 35  | 35  | 35  | 35  | 35  | 35  | 35  |
| 22       | 12                      | 26.3          |     |    | 26         | 26           | 26    | 26   | 26   | 26          | 26       | 26  | 26  | 26  | 26  | 26  | 26  | 26  | 26  |
| 11       | 13                      | 14.0          |     |    | 14         | 14           | 14    | 14   | 14   | 14          | 14       | 14  | 14  | 14  | 14  | 14  | 14  | 14  | 14  |
| 14<br>2  | 14                      | 1.8           |     |    | 2          | 2            | 2     | 2    | 2    | 2           | 2        | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   |
| т        | ot.                     | 219.4         |     |    | 219        | 219          | 219   | 219  | 219  | 219<br>Page | 219<br>4 | 219 | 219 | 219 | 219 | 219 | 219 | 219 | 219 |

| 210                                                                          |                                                                                                                              |       |                                                                                |                                                                                 | 1                                                                              | vibe                                                                            | reena                                                                          | a Cre                                                                           | eek_       | 30h5      | 0у        |         |     |     |     |     |     |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|-----------|-----------|---------|-----|-----|-----|-----|-----|
| 219<br>Pluv <sup>-</sup><br>1                                                | i. ref.                                                                                                                      | no.   | 1                                                                              | 1                                                                               | 1                                                                              | 1                                                                               | 1                                                                              | 1                                                                               | 1          | 1         | 1         | 1       | 1   | 1   | 1   | 1   | 1   |
| Time<br>Incs                                                                 | Catch<br>ment                                                                                                                |       | Su<br>Ar<br>Q                                                                  | ub-<br>rea<br>R                                                                 | S                                                                              | т                                                                               | U                                                                              | v                                                                               |            |           |           |         |     |     |     |     |     |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | $\begin{array}{r} 4.2\\ 55.5\\ 9.2\\ 11.2\\ 2.4\\ 7.9\\ 3.3\\ 5.0\\ 6.4\\ 20.4\\ 16.5\\ 35.3\\ 26.3\\ 14.0\\ 1.8\end{array}$ |       | 4<br>56<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>56<br>9<br>11<br>2<br>8<br>3<br>5<br>60<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>56<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>56<br>9<br>11<br>2<br>8<br>3<br>5<br>60<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>56<br>9<br>11<br>2<br>8<br>3<br>5<br>6<br>20<br>16<br>35<br>26<br>14<br>2 | 4<br>56<br>9<br>11<br>2<br>8<br>3<br>5<br>60<br>20<br>16<br>35<br>26<br>14<br>2 |            |           |           |         |     |     |     |     |     |
| Tot.2<br>Pluv                                                                | 219.4<br>i. ref.                                                                                                             | no.   | 219<br>1                                                                       | 219<br>1                                                                        | 219<br>1                                                                       | 219<br>1                                                                        | 219<br>1                                                                       | 219<br>1                                                                        |            |           |           |         |     |     |     |     |     |
| Raini<br>Time<br>Incs                                                        | fall-ex<br>Catch<br>ment                                                                                                     | cess, | mm,<br>Su<br>Ar<br>A                                                           | in 1<br>ub-<br>rea<br>B                                                         | time<br>C                                                                      | inc.<br>D                                                                       | . fo <sup>-</sup><br>E                                                         | llowi<br>F                                                                      | ing 1<br>G | time<br>H | shov<br>I | vn<br>J | К   | L   | М   | N   | 0   |
| 0                                                                            | 0.0                                                                                                                          |       | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0          | 0         | 0         | 0       | 0   | 0   | 0   | 0   | 0   |
| 0<br>1                                                                       | 29.7                                                                                                                         |       | 30                                                                             | 30                                                                              | 30                                                                             | 30                                                                              | 30                                                                             | 30                                                                              | 30         | 30        | 30        | 30      | 30  | 30  | 30  | 30  | 30  |
| 30<br>2                                                                      | 4.2                                                                                                                          |       | 4                                                                              | 4                                                                               | 4                                                                              | 4                                                                               | 4                                                                              | 4                                                                               | 4          | 4         | 4         | 4       | 4   | 4   | 4   | 4   | 4   |
| 4<br>3<br>6                                                                  | 6.2                                                                                                                          |       | 6                                                                              | 6                                                                               | 6                                                                              | 6                                                                               | 6                                                                              | 6                                                                               | 6          | 6         | 6         | 6       | 6   | 6   | 6   | 6   | 6   |
| 4                                                                            | 0.0                                                                                                                          |       | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0          | 0         | 0         | 0       | 0   | 0   | 0   | 0   | 0   |
| 5<br>3                                                                       | 2.9                                                                                                                          |       | 3                                                                              | 3                                                                               | 3                                                                              | 3                                                                               | 3                                                                              | 3                                                                               | 3          | 3         | 3         | 3       | 3   | 3   | 3   | 3   | 3   |
| ິ 6<br>ດ                                                                     | 0.0                                                                                                                          |       | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0          | 0         | 0         | 0       | 0   | 0   | 0   | 0   | 0   |
| 7<br>0                                                                       | 0.0                                                                                                                          |       | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0          | 0         | 0         | 0       | 0   | 0   | 0   | 0   | 0   |
| 8<br>1                                                                       | 1.4                                                                                                                          |       | 1                                                                              | 1                                                                               | 1                                                                              | 1                                                                               | 1                                                                              | 1                                                                               | 1          | 1         | 1         | 1       | 1   | 1   | 1   | 1   | 1   |
| - 9<br>15                                                                    | 15.4                                                                                                                         |       | 15                                                                             | 15                                                                              | 15                                                                             | 15                                                                              | 15                                                                             | 15                                                                              | 15         | 15        | 15        | 15      | 15  | 15  | 15  | 15  | 15  |
| 10<br>11                                                                     | 11.5                                                                                                                         |       | 11                                                                             | 11                                                                              | 11                                                                             | 11                                                                              | 11                                                                             | 11                                                                              | 11         | 11        | 11        | 11      | 11  | 11  | 11  | 11  | 11  |
| 11<br>30                                                                     | 30.3                                                                                                                         |       | 30                                                                             | 30                                                                              | 30                                                                             | 30                                                                              | 30                                                                             | 30                                                                              | 30         | 30        | 30        | 30      | 30  | 30  | 30  | 30  | 30  |
| 12<br>21                                                                     | 21.3                                                                                                                         |       | 21                                                                             | 21                                                                              | 21                                                                             | 21                                                                              | 21                                                                             | 21                                                                              | 21         | 21        | 21        | 21      | 21  | 21  | 21  | 21  | 21  |
| 13<br>0                                                                      | 9.0                                                                                                                          |       | 9                                                                              | 9                                                                               | 9                                                                              | 9                                                                               | 9                                                                              | 9                                                                               | 9          | 9         | 9         | 9       | 9   | 9   | 9   | 9   | 9   |
| 」<br>14<br>0                                                                 | 0.0                                                                                                                          |       | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0                                                                              | 0                                                                               | 0          | 0         | 0         | 0       | 0   | 0   | 0   | 0   | 0   |
| Tot.                                                                         | 132.0                                                                                                                        |       | 132                                                                            | 132                                                                             | 132                                                                            | 132                                                                             | 132                                                                            | 132                                                                             | 132        | 132       | 132       | 132     | 132 | 132 | 132 | 132 | 132 |

Page 5

Nibereena Creek\_30h50y 132 Sub-Time Catch Area Incs ment Q R S т U ۷ 0.0 0 0 0 0 0 0 0 29.7 30 30 30 30 30 30 1 2 3 4 4.2 4 4 4 4 4 4 6 6 6 6 6 6 6.2 0 0 0.0 0 0 0 0 3 0 3 3 5 6 7 3 3 3 2.9 0 0 0.0 0 0 0 0 0 0 0 0 0 0.0 8 9 1.4 1 1 1 1 1 1 15 15 15.4 15 15 15 15 11.5 10 11 11 11 11 11 11 30 30 30 11 30.3 30 30 30 12 21.3 21 21 21 21 21 21 9 13 9 9 9 9.0 9 9 0.0 0 14 0 0 0 0 0 Tot.132.0 132 132 132 132 132 132 Routing results: \*\*\*\*\*\*\* Nibereena Creek Nibereena Creek: 30 hour 50 year Design Storm DESIGN run no. 1 18.55 Parameters: kc = m = 0.85Cont. loss (mm/h) Initial loss (mm) Loss parameters 25.00 2.50 \*\*\* Calculated hydrograph, Subcatchment: 1.14 Hydrograph Calc. 359.8 Peak discharge,m<sup>3</sup>/s Time to peak,h Volume,m<sup>3</sup> 30.0 2.15E+07 Time to centroid,h 26.3 9.47 Lag (c.m. to c.m.),h Lag to peak,h 13.2 Hydrograph summary \*\*\*\*\* Description Site Calculated hydrograph, Subcatchment: 1.14 01 Hyd0001 Inc Time 0.000 1 2.00 2 3 4.00 0.000 6.00 10.271 4 5 8.00 42.291 10.00 82.161 6 7 129.423 12.00 169.772 14.00 8 16.00 167.158 9 126.880 18.00

| 1112345678901222222222222222333333333334444444444455555555           | $\begin{array}{c} 20.00\\ 22.00\\ 24.00\\ 26.00\\ 30.00\\ 32.00\\ 34.00\\ 32.00\\ 34.00\\ 36.00\\ 32.00\\ 34.00\\ 40.00\\ 42.00\\ 44.00\\ 46.00\\ 50.00\\ 52.00\\ 54.00\\ 50.00\\ 52.00\\ 54.00\\ 56.00\\ 52.00\\ 54.00\\ 66.00\\ 68.00\\ 70.00\\ 72.00\\ 74.00\\ 76.00\\ 74.00\\ 76.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74.00\\ 74$ | 83.636<br>63.500<br>68.712<br>103.895<br>184.198<br>288.187<br>359.766<br>359.702<br>287.043<br>189.892<br>111.708<br>61.686<br>34.303<br>20.111<br>12.567<br>8.271<br>5.647<br>3.976<br>2.864<br>2.104<br>1.574<br>1.98<br>0.925<br>0.723<br>0.571<br>0.456<br>0.366<br>0.297<br>0.243<br>0.200<br>0.165<br>0.138<br>0.115<br>0.097<br>0.082<br>0.069<br>0.051<br>0.044<br>0.038<br>0.025<br>0.021<br>0.016<br>0.013<br>0.010<br>0.006<br>0.007<br>0.008<br>0.007<br>0.008<br>0.0010<br>0.009<br>0.0010<br>0.0005<br>0.005<br>0.004<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.0 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 66<br>67<br>68<br>69<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77 | $132.00 \\ 134.00 \\ 136.00 \\ 138.00 \\ 140.00 \\ 142.00 \\ 144.00 \\ 144.00 \\ 146.00 \\ 146.00 \\ 148.00 \\ 150.00 \\ 152.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 154.00 \\ 1$                                                                             | $\begin{array}{c} 0.005\\ 0.004\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Nibereena Creek\_30h50y

| 78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101 | $156.00 \\ 158.00 \\ 160.00 \\ 162.00 \\ 164.00 \\ 166.00 \\ 168.00 \\ 170.00 \\ 172.00 \\ 174.00 \\ 176.00 \\ 178.00 \\ 180.00 \\ 182.00 \\ 184.00 \\ 186.00 \\ 188.00 \\ 190.00 \\ 192.00 \\ 192.00 \\ 194.00 \\ 198.00 \\ 200.00 \\ 202.00 \\ 202.00 \\ 100 \\ 202.00 \\ 100 \\ 202.00 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 1$ | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0 |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Nibereena Creek\_30h50y







| Calibre                                                                   | Document No: | HC-CRL-24100-RPT-0138 |
|---------------------------------------------------------------------------|--------------|-----------------------|
| Alpha Coal Project – Rail                                                 |              | CJVP10007-REP-C-016   |
| Detailed Floodplain Study – Diamond Creek - Myra Creek - Nibbereena Creek | Revision No: | Rev 0                 |
|                                                                           | Issue Date:  | November 2011         |
|                                                                           | Page No:     | 28                    |

### APPENDIX B FLOOD MAPS



|             |     |     | DRAWN           | D. SMITH | 16.11.11 |                     |         |
|-------------|-----|-----|-----------------|----------|----------|---------------------|---------|
| MASTER COPY |     |     | DRAFTING CHECK  |          |          |                     | ਿਸੋਨ    |
|             |     |     | DESIGNER        |          |          |                     | ALPHA C |
|             |     |     | ENG. APPROVED   |          |          | callore             |         |
|             |     |     | ENG. MANAGER    |          |          | _                   | DIAMON  |
|             |     |     | PROJECT MANAGER |          |          | CALIBRE DRAWING No. |         |
| DESCRIPTION | СКД | APP | CLIENT APPROVED |          |          | CJVP1000            | 7-DWG-0 |
| 5 6         |     | 7   |                 | 8        |          | 9                   |         |



|   |             |     |     | DRAWN           | D. SMITH | 15.11.11 |            |           |
|---|-------------|-----|-----|-----------------|----------|----------|------------|-----------|
|   |             |     |     | DRAFTING CHECK  |          |          |            | ╗┱╗       |
|   |             |     |     | DESIGNER        |          |          |            | ALPHA C   |
|   |             |     |     | ENG. APPROVED   |          |          | callbre    | RAIL ALIO |
|   |             |     |     | ENG. MANAGER    |          |          |            | FLOOD IN  |
|   |             |     |     | PROJECT MANAGER |          |          |            |           |
|   | DESCRIPTION | CKD | APP | CLIENT APPROVED |          |          | CJVP10007- | -DWG-G    |
| 5 | 6           | •   | 7   |                 | . 8      | •        | 9          |           |



|   |             |    |       | 1               |          |          |          |         |
|---|-------------|----|-------|-----------------|----------|----------|----------|---------|
|   |             |    |       | DRAWN           | D. SMITH | 15.11.11 |          |         |
|   |             |    |       | DRAFTING CHECK  |          |          |          | ╘┸┶     |
|   |             |    |       | DESIGNER        |          |          |          | ALPHA C |
|   |             |    |       | ENG. APPROVED   |          |          | callbre  |         |
|   |             |    |       | ENG. MANAGER    |          |          |          |         |
|   |             |    |       | PROJECT MANAGER |          |          |          |         |
|   | DESCRIPTION | СК | D APP | CLIENT APPROVED |          |          | CJVP1000 | 7-DWG-C |
| F | G           |    | 7     |                 | 0        |          | 0        |         |



|   |             |     |     | DRAWN           | D. SMITH | 15.11.11 |                |                 |
|---|-------------|-----|-----|-----------------|----------|----------|----------------|-----------------|
|   | MASTER COPY |     |     | DRAFTING CHECK  |          |          |                | ךל<br>הל        |
|   |             |     |     | DESIGNER        |          |          |                | _PHA C          |
|   |             |     |     | ENG. APPROVED   |          |          | <b>Callbre</b> |                 |
|   |             |     |     | ENG. MANAGER    |          |          |                | -FLUX<br>IAMONI |
|   |             |     |     | PROJECT MANAGER |          |          |                |                 |
|   | DESCRIPTION | CKD | APP | CLIENT APPROVED |          |          | CJVP10007-C    | WG-0            |
| ļ | 5 6         |     | 7   |                 | 8        |          | 9              |                 |



|             |             |  |       | DRAWN           | D. SMITH | 15.11.11 |                     |        |
|-------------|-------------|--|-------|-----------------|----------|----------|---------------------|--------|
|             | MASTER COPY |  |       | DRAFTING CHECK  |          |          |                     | ₽P ⊗   |
|             |             |  |       | DESIGNER        |          |          |                     | _PHA ( |
|             |             |  |       | ENG. APPROVED   |          |          |                     | AIL AL |
|             |             |  |       | ENG. MANAGER    |          |          |                     | IAMON  |
|             |             |  |       | PROJECT MANAGER |          |          | CALIBRE DRAWING No. |        |
| DESCRIPTION |             |  | D APP | CLIENT APPROVED |          |          | CJVP10007-DW        |        |
| Į           | 5 6         |  | 7     |                 | 8        |          | 9                   |        |



|             |             |     |     | DRAWN           | D. SMITH | 15.11.11 |                    |          |
|-------------|-------------|-----|-----|-----------------|----------|----------|--------------------|----------|
|             | MASTER COPY |     |     | DRAFTING CHECK  |          |          |                    | ᠳ┺┲      |
|             |             |     |     | DESIGNER        |          |          |                    | ALPHA C  |
|             |             |     |     | ENG. APPROVED   |          |          | callbre            | RAIL ALI |
|             |             |     |     | ENG. MANAGER    |          |          |                    |          |
|             |             |     |     | PROJECT MANAGER |          |          | CALIBRE DRAWING No |          |
| DESCRIPTION |             | CKD | APP | CLIENT APPROVED |          |          | CJVP10007-DW(      |          |
| Ę           | 5 6         |     | 7   |                 | 8        |          | 9                  |          |


|             |             |  |     |       | DRAWN           | D. SMITH | 15.11.11 |                     |         |
|-------------|-------------|--|-----|-------|-----------------|----------|----------|---------------------|---------|
|             | MASTER COPY |  |     |       | DRAFTING CHECK  |          |          |                     | ୢ୳୳ୖ    |
|             |             |  |     |       | DESIGNER        |          |          |                     | ALPHA C |
|             |             |  |     |       | ENG. APPROVED   |          |          | calibre             |         |
|             |             |  |     |       | ENG. MANAGER    |          |          |                     |         |
|             |             |  |     |       | PROJECT MANAGER |          |          | CALIBRE DRAWING No. |         |
| DESCRIPTION |             |  | СКІ | ) APP | CLIENT APPROVED |          |          | CJVP10007-DWG       |         |
| ļ           | 5 6         |  |     | 7     |                 | 8        | 8        | 9                   |         |